terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

Abstract

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Results showed higher effect of the year than the treatment in grape yield. In 2021 season, the total volatile composition (sum of free and glycosidically fractions) showed a trend to increase in T07 vs T03 in Garnacha, Syrah and Mencía cultivars due to the bound-glicosidically fraction. In 2022, the same trend was observed in Garnacha and Syrah, however the total volatile concentration in T03 was higher than T07 in Tempranillo cultivar. In the same way that in 2021 season, these tendencies were motivated by bound-glicosidically fraction. In general, applying a weekly dose in a single irrigation increased the total musts volatile concentration. An effect of the season and cultivar also was observed.

Acknowledgements: to the funding of project PID2019-105039RR-C4. We also thank to ICVV analytical service.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Vilanova M.1,6, Costa B.S.1, Uriarte D2., Moreno D. 2, Yuste J. 3, Martínez-Porro D. 3, Montoro A. 4, Torija I. 4, Cancela J.J.5,6

1 Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)
2 Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
3 Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)
4 Instituto Técnico Agronómico Provincial, 02007 Albacete (España)
5 Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
6 CropQuality: Crop Stresses and Their Effects on Quality, Associate Unit USC-CSIC(ICVV).

Contact the author*

Keywords

volatiles, deficit irrigation, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.