terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Foliar application of urea improved the nitrogen composition of Chenin grapes

Foliar application of urea improved the nitrogen composition of Chenin grapes

Abstract

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant. In addition, the experimental design was a randomized block design with three. Also, each treatment was repeated one week later. The grapes were harvest at optimum maturity (20º Brix), harvested by hand and transported in separate boxes for each treatment and control. Subsequently, grapes samples were analysed to determine the oenological parameters (official methods), and the nitrogen composition, ammonium and amino nitrogen (OenoFoss™ autoanalyzer). In addition, the yeast assimilable nitrogen (YAN) content was calculated as the sum of ammonium and amino nitrogen. Finally, the results were studied statistically by analysis of variance (ANOVA) and differences between samples were compared by Duncan’s test (p-value ≤ 0,05). In 2023 vintage, C1 and C3 treatments improved the amino nitrogen content. In addition, ammonium nitrogen content was increased by C2 and C3 treatments. And YAN content was increased by all urea treatments and C3 treatment was the one that most increased the YAN concentration in must samples. Consequently, foliar applications of urea, applied at veraison, could be an agronomic practice to improve the nitrogen concentration in Chenin grapes.

Acknowledgements: Many thanks to the collaboration with researchers from Estación Experimental Mendoza. R. M.-P. thanks National Institute for Agricultural and Food Research and Technology (INIA) and Government of La Rioja for the predoctoral contract.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rebeca Murillo-Peña 1*, Teresa Garde-Cerdán 1, Mariela Assof 2,3, Santiago Sari 3, José María Martínez-Vidaurre 1, Martín Fanzone 2,3

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja) Ctra. de Burgos, Km. 6. CP 26007 Logroño, La Rioja, España
2Universidad Juan Agustín Maza. Centro de Estudios Vitícolas y Agroindustriales. Lateral Sur del Acceso Este 2245.CP 5519 Guaymallén, Mendoza, Argentina
3Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Mendoza. San Martín 3853. CP 5507EVY, Luján de Cuyo, Mendoza, Argentina

Contact the author*

Keywords

yeast assimilable nitrogen, veraison, Vitis vinifera L

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]