terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Foliar application of urea improved the nitrogen composition of Chenin grapes

Foliar application of urea improved the nitrogen composition of Chenin grapes

Abstract

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant. In addition, the experimental design was a randomized block design with three. Also, each treatment was repeated one week later. The grapes were harvest at optimum maturity (20º Brix), harvested by hand and transported in separate boxes for each treatment and control. Subsequently, grapes samples were analysed to determine the oenological parameters (official methods), and the nitrogen composition, ammonium and amino nitrogen (OenoFoss™ autoanalyzer). In addition, the yeast assimilable nitrogen (YAN) content was calculated as the sum of ammonium and amino nitrogen. Finally, the results were studied statistically by analysis of variance (ANOVA) and differences between samples were compared by Duncan’s test (p-value ≤ 0,05). In 2023 vintage, C1 and C3 treatments improved the amino nitrogen content. In addition, ammonium nitrogen content was increased by C2 and C3 treatments. And YAN content was increased by all urea treatments and C3 treatment was the one that most increased the YAN concentration in must samples. Consequently, foliar applications of urea, applied at veraison, could be an agronomic practice to improve the nitrogen concentration in Chenin grapes.

Acknowledgements: Many thanks to the collaboration with researchers from Estación Experimental Mendoza. R. M.-P. thanks National Institute for Agricultural and Food Research and Technology (INIA) and Government of La Rioja for the predoctoral contract.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rebeca Murillo-Peña 1*, Teresa Garde-Cerdán 1, Mariela Assof 2,3, Santiago Sari 3, José María Martínez-Vidaurre 1, Martín Fanzone 2,3

1Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja) Ctra. de Burgos, Km. 6. CP 26007 Logroño, La Rioja, España
2Universidad Juan Agustín Maza. Centro de Estudios Vitícolas y Agroindustriales. Lateral Sur del Acceso Este 2245.CP 5519 Guaymallén, Mendoza, Argentina
3Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Mendoza. San Martín 3853. CP 5507EVY, Luján de Cuyo, Mendoza, Argentina

Contact the author*

Keywords

yeast assimilable nitrogen, veraison, Vitis vinifera L

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.