terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

Abstract

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.

However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

This work aims to study the volatile composition of base wines produced from five resistant varieties (Bronner, Solaris, Johanniter, Souvignier Gris, Vinera) cultivated in two experimental vineyards located in Trentino (IT): one situated on the valley bottom and one in the hill. The results were comparing with those of Chardonnay, the main variety used in this area nowadays for this product, cultivated in the same plots. The volatiles were extracted from the base wines and the GC-MS/MS analysis allowed to quantify the aromatic compounds belonging to six different chemical classes: acetates, ethyl esters, alcohols, fatty acids, terpenes and norisoprenoids.

Among the varieties, Souvignier Gris was characterised by methyl salicylate and 1-hexanol, while Solaris stood out for the concentration of β-damascone, acetates and ethyl esters. Bronner showed significant contents of some grape-derived metabolites, such as β-damascone and linalool. This terpene was also present in higher quantities in Solaris and Johanniter. Regarding the location, acetates and ethyl esters were higher in base wines of the valley bottom and fatty acids, higher alcohols and terpenes in the hilly plot wines.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mauro Paolini1*, Tomas Roman1, Bruno Cisilotto2,3, Sergio Moser1, Nicola Cappello1, Roberto Larcher1

1Fondazione Edmund Mach, Via E. Mach n.1, 38010, San Michele all’Adige, Italia
2Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Brazil
3Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), Campus Bento Gonçalves, Brazil

Contact the author*

Keywords

resistant varieties, aroma, base wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.