terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

Abstract

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.

However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

This work aims to study the volatile composition of base wines produced from five resistant varieties (Bronner, Solaris, Johanniter, Souvignier Gris, Vinera) cultivated in two experimental vineyards located in Trentino (IT): one situated on the valley bottom and one in the hill. The results were comparing with those of Chardonnay, the main variety used in this area nowadays for this product, cultivated in the same plots. The volatiles were extracted from the base wines and the GC-MS/MS analysis allowed to quantify the aromatic compounds belonging to six different chemical classes: acetates, ethyl esters, alcohols, fatty acids, terpenes and norisoprenoids.

Among the varieties, Souvignier Gris was characterised by methyl salicylate and 1-hexanol, while Solaris stood out for the concentration of β-damascone, acetates and ethyl esters. Bronner showed significant contents of some grape-derived metabolites, such as β-damascone and linalool. This terpene was also present in higher quantities in Solaris and Johanniter. Regarding the location, acetates and ethyl esters were higher in base wines of the valley bottom and fatty acids, higher alcohols and terpenes in the hilly plot wines.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mauro Paolini1*, Tomas Roman1, Bruno Cisilotto2,3, Sergio Moser1, Nicola Cappello1, Roberto Larcher1

1Fondazione Edmund Mach, Via E. Mach n.1, 38010, San Michele all’Adige, Italia
2Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Brazil
3Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), Campus Bento Gonçalves, Brazil

Contact the author*

Keywords

resistant varieties, aroma, base wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.