terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

Abstract

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.

However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

This work aims to study the volatile composition of base wines produced from five resistant varieties (Bronner, Solaris, Johanniter, Souvignier Gris, Vinera) cultivated in two experimental vineyards located in Trentino (IT): one situated on the valley bottom and one in the hill. The results were comparing with those of Chardonnay, the main variety used in this area nowadays for this product, cultivated in the same plots. The volatiles were extracted from the base wines and the GC-MS/MS analysis allowed to quantify the aromatic compounds belonging to six different chemical classes: acetates, ethyl esters, alcohols, fatty acids, terpenes and norisoprenoids.

Among the varieties, Souvignier Gris was characterised by methyl salicylate and 1-hexanol, while Solaris stood out for the concentration of β-damascone, acetates and ethyl esters. Bronner showed significant contents of some grape-derived metabolites, such as β-damascone and linalool. This terpene was also present in higher quantities in Solaris and Johanniter. Regarding the location, acetates and ethyl esters were higher in base wines of the valley bottom and fatty acids, higher alcohols and terpenes in the hilly plot wines.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mauro Paolini1*, Tomas Roman1, Bruno Cisilotto2,3, Sergio Moser1, Nicola Cappello1, Roberto Larcher1

1Fondazione Edmund Mach, Via E. Mach n.1, 38010, San Michele all’Adige, Italia
2Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Brazil
3Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), Campus Bento Gonçalves, Brazil

Contact the author*

Keywords

resistant varieties, aroma, base wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].