terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Abstract

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).

Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8). During a 60-day trial, from flowering to ripening, every 15 days’ physiological analyses (Multiplex, DUALEX) and leaf gas exchange analyses were performed to monitor plant status. Root, trunk, shoot, leaf, and berry samples were collected at the end of the trial for phenolic content analysis. T 1:4 and T 1:8 treatments enhanced the plant’s physiological capacity 30 days after the start of the treatments, obtaining higher NBI values and chlorophyll concentrations (p-value < 0.05). Intrinsic water use efficiency (EUAi, AN/gs) also increased in both cane treatments (T 1:4 and T 1:8) due to higher CO2 fixation. However, plants irrigated with water supplemented with cane extract decreased polyphenol levels amounts in cane and leaf tissues, whereas in roots and trunk organs no differences in phenolic profile were noted. Control plants had higher total concentrations of stilbenes and flavonoids (anthocyanins and flavanols) in canes and flavonoids (anthocyanins, flavonols and flavanones) in leaves. Irrigation with cane extract seems enhanced physiological capacities but decreased secondary metabolite synthesis in aerial tissues (canes and leaves).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andreu Mairata1*, Josep Valls2,3,4, David Labarga1, Miguel Puelles1, Alan Jamain2, Stéphanie Cluzet2,3, Javier Portu1, Alicia Pou1

1 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26006 Logroño, Spain
2 Univ. Buordeoseaux, INRAE, Bordeaux INP, INRAEBordeaux Sciences Agro, OENO, UMR 1366, ISVV, Equipe Molécules d’Intérêt Biologique (MIB), ISVV,F-33140, Villenave d’Ornon, France, 33140, Francia
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170, Gradignan, France
4 Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140, Villenave d’Ornon, France

Contact the author*

Keywords

flavonoid, circular economy, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.