terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Abstract

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).

Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8). During a 60-day trial, from flowering to ripening, every 15 days’ physiological analyses (Multiplex, DUALEX) and leaf gas exchange analyses were performed to monitor plant status. Root, trunk, shoot, leaf, and berry samples were collected at the end of the trial for phenolic content analysis. T 1:4 and T 1:8 treatments enhanced the plant’s physiological capacity 30 days after the start of the treatments, obtaining higher NBI values and chlorophyll concentrations (p-value < 0.05). Intrinsic water use efficiency (EUAi, AN/gs) also increased in both cane treatments (T 1:4 and T 1:8) due to higher CO2 fixation. However, plants irrigated with water supplemented with cane extract decreased polyphenol levels amounts in cane and leaf tissues, whereas in roots and trunk organs no differences in phenolic profile were noted. Control plants had higher total concentrations of stilbenes and flavonoids (anthocyanins and flavanols) in canes and flavonoids (anthocyanins, flavonols and flavanones) in leaves. Irrigation with cane extract seems enhanced physiological capacities but decreased secondary metabolite synthesis in aerial tissues (canes and leaves).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Andreu Mairata1*, Josep Valls2,3,4, David Labarga1, Miguel Puelles1, Alan Jamain2, Stéphanie Cluzet2,3, Javier Portu1, Alicia Pou1

1 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26006 Logroño, Spain
2 Univ. Buordeoseaux, INRAE, Bordeaux INP, INRAEBordeaux Sciences Agro, OENO, UMR 1366, ISVV, Equipe Molécules d’Intérêt Biologique (MIB), ISVV,F-33140, Villenave d’Ornon, France, 33140, Francia
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170, Gradignan, France
4 Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140, Villenave d’Ornon, France

Contact the author*

Keywords

flavonoid, circular economy, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.