terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Development of a new method for detecting acetic acid bacteria in wine

Development of a new method for detecting acetic acid bacteria in wine

Abstract

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.

The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages. The aim of this study was to develop a liquid culture medium for the early detection of acetic acid bacteria based on olfactometry[2].

The culture medium was designed by modifying a previously existing one for the detection of acetic acid bacteria. For this purpose, the nutrient content was modified to enhance the development of these microorganisms, and their selectivity was increased. The efficacy of the medium was studied by seeding it with pure cultures and with mixtures of microorganisms of different species, and with wines artificially contaminated. Finally, the medium was validated by using it both in the laboratory and in wineries, with wines of different types and origins. It was possible to establish a correlation between the initial concentration of acetic acid bacteria and the time of appearance of detectable levels of acetic acid in the medium by olfactometry.

Acknowledgements: Laboratorios Dolmar Tentamus for the help provided

References

1)  Bartowsky E.J. et al. (2008) Acetic acid bacteria spoilage of bottled red wine. A review. Int. J. Food Microbiol., 125: 60-70, DOI: 10.1016/j.ijfoodmicro.2007.10.016

2)  Rodrigues N. et al. (2015) Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J. Appl. Microbiol., 90: 588-599, DOI: 10.1046/j.1365-2672.2001.01275.x.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Parra1*, A. Ovejas1, L. González-Arenzana2, A.R. Gutiérrez2 and I. López-Alfaro2

1Laboratorio Dolmar Tentamus, Paraje Micalanda, 26221 Gimileo, La Rioja, Spain
2ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja and CSIC), Finca La Grajera, Ctra. Burgos km 6, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

acetic acid bacteria, acetic acid, olfactometry, wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.