terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Development of a new method for detecting acetic acid bacteria in wine

Development of a new method for detecting acetic acid bacteria in wine

Abstract

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.

The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages. The aim of this study was to develop a liquid culture medium for the early detection of acetic acid bacteria based on olfactometry[2].

The culture medium was designed by modifying a previously existing one for the detection of acetic acid bacteria. For this purpose, the nutrient content was modified to enhance the development of these microorganisms, and their selectivity was increased. The efficacy of the medium was studied by seeding it with pure cultures and with mixtures of microorganisms of different species, and with wines artificially contaminated. Finally, the medium was validated by using it both in the laboratory and in wineries, with wines of different types and origins. It was possible to establish a correlation between the initial concentration of acetic acid bacteria and the time of appearance of detectable levels of acetic acid in the medium by olfactometry.

Acknowledgements: Laboratorios Dolmar Tentamus for the help provided

References

1)  Bartowsky E.J. et al. (2008) Acetic acid bacteria spoilage of bottled red wine. A review. Int. J. Food Microbiol., 125: 60-70, DOI: 10.1016/j.ijfoodmicro.2007.10.016

2)  Rodrigues N. et al. (2015) Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J. Appl. Microbiol., 90: 588-599, DOI: 10.1046/j.1365-2672.2001.01275.x.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

A. Parra1*, A. Ovejas1, L. González-Arenzana2, A.R. Gutiérrez2 and I. López-Alfaro2

1Laboratorio Dolmar Tentamus, Paraje Micalanda, 26221 Gimileo, La Rioja, Spain
2ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja and CSIC), Finca La Grajera, Ctra. Burgos km 6, 26007 Logroño (La Rioja), Spain

Contact the author*

Keywords

acetic acid bacteria, acetic acid, olfactometry, wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.