terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

Abstract

Copper and SO2 tolerance are two well-studied phenotypic traits of Saccharomyces cerevisiae. The genetic bases of these traits are the allelic expansion at the CUP1 locus and reciprocal translocation at the SSU1 locus, respectively. Previous work identified a negative association between SO2 and copper tolerance in S. cerevisiae wine yeasts. To understand the genetic basis of copper sensitivity, we used bulk-segregant QTL analysis and identified genetic variation at the SSU1 locus as a causative factor. This was confirmed through reciprocal hemizygosity analysis in a strain with 20 copies of CUP1. Transcriptional and proteomic analysis revealed that over-expression of SSU1 didn’t suppress CUP1 expression or limit protein production. Instead, it induced sulfur limitation when exposed to copper.Furthermore, we observed that an SSU1 over-expressing strain became more sensitive to moderately elevated copper concentrations in sulfur-limited conditions, indicating a burden on the sulfate assimilation pathway. Over-expression of MET 3/14/16, genes upstream of H2S production in the sulfate assimilation pathway increased the production of SO2 and H2S but did not improve copper sensitivity in an SSU1 over-expressing background. We conclude that copper and SO2 tolerance are conditional traits in S. cerevisiae and provide evidence of the metabolic basis for their mutual exclusivity.

Acknowledgements: For genome sequencing the authors would like to thank the Ramaciotti Center for Genomics which is funded through Bioplatforms Australia Pty Ltd (BPA), a National Collaborative Research Infrastructure Strategy (NCRIS). Proteomic data acquisition was obtained with support of the Adelaide Proteomics Centre at The University of Adelaide, in partnership with the South Australian Health and Medical Research Institute Proteomics Core Facility

References:

1)  Onetto CA. et al. (2023). SO2 and copper tolerance exhibit an evolutionary trade-off in Saccharomyces cerevisiae. PLoS Genetics, 19(3), e1010692.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Cristobal Onetto1*, Dariusz Kutyna1, Radka Kolouchova1, Jane McCarthy1, Anthony Borneman1, Simon Schmidt1

1The Australian Wine Research Institute, Glen Osmond, South Australia, Australia

Contact the author*

Keywords

Saccharomyces cerevisiae, Copper tolerance, SO2 tolerance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).