terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

Abstract

Copper and SO2 tolerance are two well-studied phenotypic traits of Saccharomyces cerevisiae. The genetic bases of these traits are the allelic expansion at the CUP1 locus and reciprocal translocation at the SSU1 locus, respectively. Previous work identified a negative association between SO2 and copper tolerance in S. cerevisiae wine yeasts. To understand the genetic basis of copper sensitivity, we used bulk-segregant QTL analysis and identified genetic variation at the SSU1 locus as a causative factor. This was confirmed through reciprocal hemizygosity analysis in a strain with 20 copies of CUP1. Transcriptional and proteomic analysis revealed that over-expression of SSU1 didn’t suppress CUP1 expression or limit protein production. Instead, it induced sulfur limitation when exposed to copper.Furthermore, we observed that an SSU1 over-expressing strain became more sensitive to moderately elevated copper concentrations in sulfur-limited conditions, indicating a burden on the sulfate assimilation pathway. Over-expression of MET 3/14/16, genes upstream of H2S production in the sulfate assimilation pathway increased the production of SO2 and H2S but did not improve copper sensitivity in an SSU1 over-expressing background. We conclude that copper and SO2 tolerance are conditional traits in S. cerevisiae and provide evidence of the metabolic basis for their mutual exclusivity.

Acknowledgements: For genome sequencing the authors would like to thank the Ramaciotti Center for Genomics which is funded through Bioplatforms Australia Pty Ltd (BPA), a National Collaborative Research Infrastructure Strategy (NCRIS). Proteomic data acquisition was obtained with support of the Adelaide Proteomics Centre at The University of Adelaide, in partnership with the South Australian Health and Medical Research Institute Proteomics Core Facility

References:

1)  Onetto CA. et al. (2023). SO2 and copper tolerance exhibit an evolutionary trade-off in Saccharomyces cerevisiae. PLoS Genetics, 19(3), e1010692.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Cristobal Onetto1*, Dariusz Kutyna1, Radka Kolouchova1, Jane McCarthy1, Anthony Borneman1, Simon Schmidt1

1The Australian Wine Research Institute, Glen Osmond, South Australia, Australia

Contact the author*

Keywords

Saccharomyces cerevisiae, Copper tolerance, SO2 tolerance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.