terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

Abstract

Copper and SO2 tolerance are two well-studied phenotypic traits of Saccharomyces cerevisiae. The genetic bases of these traits are the allelic expansion at the CUP1 locus and reciprocal translocation at the SSU1 locus, respectively. Previous work identified a negative association between SO2 and copper tolerance in S. cerevisiae wine yeasts. To understand the genetic basis of copper sensitivity, we used bulk-segregant QTL analysis and identified genetic variation at the SSU1 locus as a causative factor. This was confirmed through reciprocal hemizygosity analysis in a strain with 20 copies of CUP1. Transcriptional and proteomic analysis revealed that over-expression of SSU1 didn’t suppress CUP1 expression or limit protein production. Instead, it induced sulfur limitation when exposed to copper.Furthermore, we observed that an SSU1 over-expressing strain became more sensitive to moderately elevated copper concentrations in sulfur-limited conditions, indicating a burden on the sulfate assimilation pathway. Over-expression of MET 3/14/16, genes upstream of H2S production in the sulfate assimilation pathway increased the production of SO2 and H2S but did not improve copper sensitivity in an SSU1 over-expressing background. We conclude that copper and SO2 tolerance are conditional traits in S. cerevisiae and provide evidence of the metabolic basis for their mutual exclusivity.

Acknowledgements: For genome sequencing the authors would like to thank the Ramaciotti Center for Genomics which is funded through Bioplatforms Australia Pty Ltd (BPA), a National Collaborative Research Infrastructure Strategy (NCRIS). Proteomic data acquisition was obtained with support of the Adelaide Proteomics Centre at The University of Adelaide, in partnership with the South Australian Health and Medical Research Institute Proteomics Core Facility

References:

1)  Onetto CA. et al. (2023). SO2 and copper tolerance exhibit an evolutionary trade-off in Saccharomyces cerevisiae. PLoS Genetics, 19(3), e1010692.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Cristobal Onetto1*, Dariusz Kutyna1, Radka Kolouchova1, Jane McCarthy1, Anthony Borneman1, Simon Schmidt1

1The Australian Wine Research Institute, Glen Osmond, South Australia, Australia

Contact the author*

Keywords

Saccharomyces cerevisiae, Copper tolerance, SO2 tolerance

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.