terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of different Lachancea thermotolerans strains in wine acidity

Influence of different Lachancea thermotolerans strains in wine acidity

Abstract

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.

In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied. For this, microvinifications were carried out with pasteurized must and the evolution of fermentation was monitored by measuring the weight lost. The results were compared with a control fermented with a commercial strain of Saccharomyces cerevisiae (Uvaferm VRB®, Lallemand). In the obtained wines, the most important oenological parameters were analysed.

Data showed differences in the fermentation kinetics among the strains of L. thermotolerans, and the commercial strain of S. cerevisiae was the fastest one. The wines inoculated with the L. thermotolerans strains presented significantly lower pH than the control wines and the production of lactic acid showed high variability among the strains, with concentrations ranging from 0,88 g/L to 4,19 g/L, which highlights the importance of strain selection processes. Overall, the results obtained in this work demonstrated the potential of the L. thermotolerans strains studied to be used as inoculums for biological acidification.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rocío Escribano-Viana1*,Patrocinio Garijo1, Lucía González-Arenzana1,Pilar Santamaría1, Ana Rosa Gutiérrez1

1Instituto de Ciencias de la Vid y del Vino, (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca La Grajera, Carretera de Burgos, km 6, 26071 Logroño, La Rioja, Spain.

Contact the author*

Keywords

Lachancea thermotolerans, wine, acidity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.