terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

Abstract

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest. The experiment was carried out during two consecutive seasons (2021 and 2022), in vineyards of Garnacha Tinta (in Badajoz: T03, T07, T15), Tempranillo (in Valladolid: T03, T07, T15), Syrah (in Albacete: T03 and T07) and Mencía (in Lugo: T01, T03, T07). Polyphenolic substances were extracted from grapes. Thirty-six compounds grouped into anthocyanins and non-anthocyanins compounds were analyzed by HPLC. In 2021, practically no effect on the accumulation of phenolic compounds caused by FI was observed. Only the concentration of acetates in Syrah increased with the T07 treatment compared to T03. In 2022, T07 compared to T03 favored the accumulation of anthocyanins compounds in Tempranillo and Syrah, while Mencía was hardly affected and Garnacha Tinta even decreased its values significantly. In Tempranillo, T15 tended to slightly increase the anthocyanin content compared to T03, while in Garnacha Tinta the concentration of acetates tended to decrease. T01 applied to Mencía tended to increase the anthocyanin content, mainly compared to T03. Regarding non-anthocyanins compounds, the different irrigation treatments did not affect the accumulation of the analysed compounds. The results show that the phenolic composition of grapes, mainly anthocyanins, can be affected by the irrigation strategy applied and its effects may vary depending on the variety and the year.

Acknowledgements: Grant PID2019-105039RR-C4 funded by MCIN/AEI/10 .13039/501100011033.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Moreno1, A. Montoro2, J. Yuste3, J.J. Cancela4, D. Martínez-Porro3, I. Torija2, M. Fandiño4, M. Vilanova5, L.A. Mancha1, D. Uriarte1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Instituto Técnico Agronómico Provincial, 02007 Albacete (España)
3Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)
4Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
5Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)

Contact the author*

Keywords

anthocyanins, deficit irrigation, non-anthocyanins, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.