terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

Abstract

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest. The experiment was carried out during two consecutive seasons (2021 and 2022), in vineyards of Garnacha Tinta (in Badajoz: T03, T07, T15), Tempranillo (in Valladolid: T03, T07, T15), Syrah (in Albacete: T03 and T07) and Mencía (in Lugo: T01, T03, T07). Polyphenolic substances were extracted from grapes. Thirty-six compounds grouped into anthocyanins and non-anthocyanins compounds were analyzed by HPLC. In 2021, practically no effect on the accumulation of phenolic compounds caused by FI was observed. Only the concentration of acetates in Syrah increased with the T07 treatment compared to T03. In 2022, T07 compared to T03 favored the accumulation of anthocyanins compounds in Tempranillo and Syrah, while Mencía was hardly affected and Garnacha Tinta even decreased its values significantly. In Tempranillo, T15 tended to slightly increase the anthocyanin content compared to T03, while in Garnacha Tinta the concentration of acetates tended to decrease. T01 applied to Mencía tended to increase the anthocyanin content, mainly compared to T03. Regarding non-anthocyanins compounds, the different irrigation treatments did not affect the accumulation of the analysed compounds. The results show that the phenolic composition of grapes, mainly anthocyanins, can be affected by the irrigation strategy applied and its effects may vary depending on the variety and the year.

Acknowledgements: Grant PID2019-105039RR-C4 funded by MCIN/AEI/10 .13039/501100011033.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Moreno1, A. Montoro2, J. Yuste3, J.J. Cancela4, D. Martínez-Porro3, I. Torija2, M. Fandiño4, M. Vilanova5, L.A. Mancha1, D. Uriarte1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Instituto Técnico Agronómico Provincial, 02007 Albacete (España)
3Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)
4Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
5Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)

Contact the author*

Keywords

anthocyanins, deficit irrigation, non-anthocyanins, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.