terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

Abstract

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest. The experiment was carried out during two consecutive seasons (2021 and 2022), in vineyards of Garnacha Tinta (in Badajoz: T03, T07, T15), Tempranillo (in Valladolid: T03, T07, T15), Syrah (in Albacete: T03 and T07) and Mencía (in Lugo: T01, T03, T07). Polyphenolic substances were extracted from grapes. Thirty-six compounds grouped into anthocyanins and non-anthocyanins compounds were analyzed by HPLC. In 2021, practically no effect on the accumulation of phenolic compounds caused by FI was observed. Only the concentration of acetates in Syrah increased with the T07 treatment compared to T03. In 2022, T07 compared to T03 favored the accumulation of anthocyanins compounds in Tempranillo and Syrah, while Mencía was hardly affected and Garnacha Tinta even decreased its values significantly. In Tempranillo, T15 tended to slightly increase the anthocyanin content compared to T03, while in Garnacha Tinta the concentration of acetates tended to decrease. T01 applied to Mencía tended to increase the anthocyanin content, mainly compared to T03. Regarding non-anthocyanins compounds, the different irrigation treatments did not affect the accumulation of the analysed compounds. The results show that the phenolic composition of grapes, mainly anthocyanins, can be affected by the irrigation strategy applied and its effects may vary depending on the variety and the year.

Acknowledgements: Grant PID2019-105039RR-C4 funded by MCIN/AEI/10 .13039/501100011033.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Moreno1, A. Montoro2, J. Yuste3, J.J. Cancela4, D. Martínez-Porro3, I. Torija2, M. Fandiño4, M. Vilanova5, L.A. Mancha1, D. Uriarte1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Instituto Técnico Agronómico Provincial, 02007 Albacete (España)
3Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)
4Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
5Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)

Contact the author*

Keywords

anthocyanins, deficit irrigation, non-anthocyanins, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.