terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Abstract

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity. In grapevine, several factors can influence the RSA development (e.g. rootstock and scion genotypes, soil and plant management…). However, the effects of all these factors on the establishment of the RSA and associated functions (e.g. drought tolerance) have hardly ever been assessed. Such an assessment could help to improve the management of vineyards in our changing world. This lack of knowledge is mainly associated to methodological difficulties to characterize the RSA during grapevine development in the vineyard. To take up this challenge, we developed a new phenotyping pipeline, connecting photogrammetric data (produced by ArcheovisionProduction) with plant structures reconstruction software (PlantScan3D) and two packages dedicated to plant architecture analysis and visualisation (MTG and PlantGL from the OpenAlea platform). This new approach was developed on the uprooted root systems of two perennial species: grapevine and maritime pine. Their robustness was evaluated by comparing root traits estimated by this pipeline to root traits measured manually or estimated by a reference technique (semi-automated 3D digitizing, used on maritime pine root systems [1]). With this pipeline, we have planned to characterize the RSA of different rootstock genotypes, from different plantation types, soil management or water treatments, and at several developmental stages. All these data will be used to calibrate a functional-structural root model to facilitate the selection of plant material aimed to overcome the negative effects of climate change.

Acknowledgements: This work was financially supported by the Environmental Sciences department of the University of Bordeaux (“PROJETS EMERGENTS”).

References:
1)  Danjon, F. and Reubens, B. (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and soil, 303, 1-34

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Clément Saint Cast1*, Céline Meredieu2, Jean-Pascal Tandonnet1, Nathalie Ollat1, Frédéric Boudon3,4, Raphaël Ségura2, Pascal Mora5, Frédéric Danjon2

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2BioGeCo, University of Bordeaux, INRAE, 33610, Cestas, France
3AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
5Archéovision, University of Bordeaux Montaigne, 33000, Bordeaux, France

Contact the author*

Keywords

root system architecture, 3D phenotyping, Vitis sp., Pinus pinaster, photogrammetry, architectural analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.