terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Abstract

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity. In grapevine, several factors can influence the RSA development (e.g. rootstock and scion genotypes, soil and plant management…). However, the effects of all these factors on the establishment of the RSA and associated functions (e.g. drought tolerance) have hardly ever been assessed. Such an assessment could help to improve the management of vineyards in our changing world. This lack of knowledge is mainly associated to methodological difficulties to characterize the RSA during grapevine development in the vineyard. To take up this challenge, we developed a new phenotyping pipeline, connecting photogrammetric data (produced by ArcheovisionProduction) with plant structures reconstruction software (PlantScan3D) and two packages dedicated to plant architecture analysis and visualisation (MTG and PlantGL from the OpenAlea platform). This new approach was developed on the uprooted root systems of two perennial species: grapevine and maritime pine. Their robustness was evaluated by comparing root traits estimated by this pipeline to root traits measured manually or estimated by a reference technique (semi-automated 3D digitizing, used on maritime pine root systems [1]). With this pipeline, we have planned to characterize the RSA of different rootstock genotypes, from different plantation types, soil management or water treatments, and at several developmental stages. All these data will be used to calibrate a functional-structural root model to facilitate the selection of plant material aimed to overcome the negative effects of climate change.

Acknowledgements: This work was financially supported by the Environmental Sciences department of the University of Bordeaux (“PROJETS EMERGENTS”).

References:
1)  Danjon, F. and Reubens, B. (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and soil, 303, 1-34

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Clément Saint Cast1*, Céline Meredieu2, Jean-Pascal Tandonnet1, Nathalie Ollat1, Frédéric Boudon3,4, Raphaël Ségura2, Pascal Mora5, Frédéric Danjon2

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2BioGeCo, University of Bordeaux, INRAE, 33610, Cestas, France
3AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
5Archéovision, University of Bordeaux Montaigne, 33000, Bordeaux, France

Contact the author*

Keywords

root system architecture, 3D phenotyping, Vitis sp., Pinus pinaster, photogrammetry, architectural analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.