terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Abstract

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity. In grapevine, several factors can influence the RSA development (e.g. rootstock and scion genotypes, soil and plant management…). However, the effects of all these factors on the establishment of the RSA and associated functions (e.g. drought tolerance) have hardly ever been assessed. Such an assessment could help to improve the management of vineyards in our changing world. This lack of knowledge is mainly associated to methodological difficulties to characterize the RSA during grapevine development in the vineyard. To take up this challenge, we developed a new phenotyping pipeline, connecting photogrammetric data (produced by ArcheovisionProduction) with plant structures reconstruction software (PlantScan3D) and two packages dedicated to plant architecture analysis and visualisation (MTG and PlantGL from the OpenAlea platform). This new approach was developed on the uprooted root systems of two perennial species: grapevine and maritime pine. Their robustness was evaluated by comparing root traits estimated by this pipeline to root traits measured manually or estimated by a reference technique (semi-automated 3D digitizing, used on maritime pine root systems [1]). With this pipeline, we have planned to characterize the RSA of different rootstock genotypes, from different plantation types, soil management or water treatments, and at several developmental stages. All these data will be used to calibrate a functional-structural root model to facilitate the selection of plant material aimed to overcome the negative effects of climate change.

Acknowledgements: This work was financially supported by the Environmental Sciences department of the University of Bordeaux (“PROJETS EMERGENTS”).

References:
1)  Danjon, F. and Reubens, B. (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and soil, 303, 1-34

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Clément Saint Cast1*, Céline Meredieu2, Jean-Pascal Tandonnet1, Nathalie Ollat1, Frédéric Boudon3,4, Raphaël Ségura2, Pascal Mora5, Frédéric Danjon2

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2BioGeCo, University of Bordeaux, INRAE, 33610, Cestas, France
3AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
5Archéovision, University of Bordeaux Montaigne, 33000, Bordeaux, France

Contact the author*

Keywords

root system architecture, 3D phenotyping, Vitis sp., Pinus pinaster, photogrammetry, architectural analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.