terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Abstract

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity. In grapevine, several factors can influence the RSA development (e.g. rootstock and scion genotypes, soil and plant management…). However, the effects of all these factors on the establishment of the RSA and associated functions (e.g. drought tolerance) have hardly ever been assessed. Such an assessment could help to improve the management of vineyards in our changing world. This lack of knowledge is mainly associated to methodological difficulties to characterize the RSA during grapevine development in the vineyard. To take up this challenge, we developed a new phenotyping pipeline, connecting photogrammetric data (produced by ArcheovisionProduction) with plant structures reconstruction software (PlantScan3D) and two packages dedicated to plant architecture analysis and visualisation (MTG and PlantGL from the OpenAlea platform). This new approach was developed on the uprooted root systems of two perennial species: grapevine and maritime pine. Their robustness was evaluated by comparing root traits estimated by this pipeline to root traits measured manually or estimated by a reference technique (semi-automated 3D digitizing, used on maritime pine root systems [1]). With this pipeline, we have planned to characterize the RSA of different rootstock genotypes, from different plantation types, soil management or water treatments, and at several developmental stages. All these data will be used to calibrate a functional-structural root model to facilitate the selection of plant material aimed to overcome the negative effects of climate change.

Acknowledgements: This work was financially supported by the Environmental Sciences department of the University of Bordeaux (“PROJETS EMERGENTS”).

References:
1)  Danjon, F. and Reubens, B. (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and soil, 303, 1-34

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Clément Saint Cast1*, Céline Meredieu2, Jean-Pascal Tandonnet1, Nathalie Ollat1, Frédéric Boudon3,4, Raphaël Ségura2, Pascal Mora5, Frédéric Danjon2

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2BioGeCo, University of Bordeaux, INRAE, 33610, Cestas, France
3AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
5Archéovision, University of Bordeaux Montaigne, 33000, Bordeaux, France

Contact the author*

Keywords

root system architecture, 3D phenotyping, Vitis sp., Pinus pinaster, photogrammetry, architectural analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.