terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Abstract

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity. In grapevine, several factors can influence the RSA development (e.g. rootstock and scion genotypes, soil and plant management…). However, the effects of all these factors on the establishment of the RSA and associated functions (e.g. drought tolerance) have hardly ever been assessed. Such an assessment could help to improve the management of vineyards in our changing world. This lack of knowledge is mainly associated to methodological difficulties to characterize the RSA during grapevine development in the vineyard. To take up this challenge, we developed a new phenotyping pipeline, connecting photogrammetric data (produced by ArcheovisionProduction) with plant structures reconstruction software (PlantScan3D) and two packages dedicated to plant architecture analysis and visualisation (MTG and PlantGL from the OpenAlea platform). This new approach was developed on the uprooted root systems of two perennial species: grapevine and maritime pine. Their robustness was evaluated by comparing root traits estimated by this pipeline to root traits measured manually or estimated by a reference technique (semi-automated 3D digitizing, used on maritime pine root systems [1]). With this pipeline, we have planned to characterize the RSA of different rootstock genotypes, from different plantation types, soil management or water treatments, and at several developmental stages. All these data will be used to calibrate a functional-structural root model to facilitate the selection of plant material aimed to overcome the negative effects of climate change.

Acknowledgements: This work was financially supported by the Environmental Sciences department of the University of Bordeaux (“PROJETS EMERGENTS”).

References:
1)  Danjon, F. and Reubens, B. (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant and soil, 303, 1-34

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Clément Saint Cast1*, Céline Meredieu2, Jean-Pascal Tandonnet1, Nathalie Ollat1, Frédéric Boudon3,4, Raphaël Ségura2, Pascal Mora5, Frédéric Danjon2

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2BioGeCo, University of Bordeaux, INRAE, 33610, Cestas, France
3AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
4CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
5Archéovision, University of Bordeaux Montaigne, 33000, Bordeaux, France

Contact the author*

Keywords

root system architecture, 3D phenotyping, Vitis sp., Pinus pinaster, photogrammetry, architectural analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.