terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Abstract

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock. Considering the increasing pressure of the biotic and abiotic stresses, it is utmost necessary to also evaluate the effects of drought on the microbiome associated to grapevine in a sensitive Mediterranean region (Alentejo – Portugal).

In this study we characterize the diversity and the structure of the soil microbial community of the drought tolerant Syrah cultivar under long-term irrigation experiment (five years) with three levels (100% ETc – FI; 50% ETc – DI; rain-fed – NI). Metabarcoding of bacteria (16S rRNA subregion) and fungi (ITS region) was applied on the same soil samples. Also soil chemical analysis are being integrated with genomic data.

Although the richness and evenness indexes for alpha diversity did not show strong differences among the irrigation strategies for neither of the targeted microorganisms, beta diversity revealed statistically supported community differentiation. Across all samples the top three bacterial phyla were Pseudomonadota, Actinobacteriota, and Bacteroidota with a total relative abundance of 60%. Regarding the most represented bacterial species across samples, Gaiella occulta, an uncultured actinobacteria first described in deep mineral waters in Portugal, is shown with prevalence in DI samples with more than 10% of total ASVs.

Next, we will predict communities functionalities, bacterial networks, according to soil chemistry data and compare them with the soils’ samples obtained in July 2023.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gianmaria Califano1,2*, Júlio Maciel1Olfa Zarrouk3,4, Miguel Damásio5, Jose Silvestre5, Ana Margarida Fortes1,2

1Faculdade de Ciências, University of Lisbon, Portugal
2BioISI, Faculdade de Ciências, University of Lisbon, Portugal
3LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
4COLAB, Torres Vedras, Portugal
5INIAV, Polo de Dois Portos, Portugal

Contact the author*

Keywords

soil microbiome, metabarcoding, grapevine, Syrah, drought, crop sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.