terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

Abstract

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine. A comparative analysis was conducted between two training systems, head-trained (HT) and vertical cordon (VC), along with two irrigation regimes, rainfed and irrigation at 30 % of ET0. The results indicated that the training systems had a more significant impact on production and fruit composition compared to the irrigation treatment. Specifically, the VC system increased yield by ranging from 60% to 80% when compared to the HT system. Additionally, the higher productivity observed in the VC vines led to more optimal source-sink ratios, resulting in a tendency toward delayed ripening. This research provides valuable insights into viticultural practices to improve the productivity and quality of minority varieties such as Maturana Blanca and contributes to a broader understanding of sustainable viticulture and biodiversity preservation in the face of climate change. Moreover, our findings have significant implications to promote the cultivation and valorization of this minority grape variety adapted to semi-arid climates as an adaptation measure to counteract the challenges posed by global warming.

Acknowledgments: We would like to thank the winegrowers Pedro Isaac Balda and Pedro José Balda for their willingness to collaborate with us and the ICVV experimental winery laboratory staff.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miguel Puelles1*, Pedro Balda2, Andreu Mairata1, David Labarga1, Fernando Martínez de Toda1, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain

2Universidad de La Rioja, c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

source-sink, training system, minority varieties, viticulture, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.