terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

Vertical cordon training system enhances yield and delays ripening in cv. Maturana Blanca

Abstract

The growing interest in minority grape varieties is due to their potential for adaptation to global warming and their oenological capabilities. However, the cultivation of these varieties has often been limited due to their low economic efficiency. One such example is Maturana Blanca, a recently recovered and authorized minority grape variety in the DOCa Rioja region, known for its remarkable oenological potential but low productivity. This study aimed to increase the yield of Maturana Blanca by implementing the vertical cordon training system, which allowed for a higher number of buds per plant and an increased cluster count per vine. A comparative analysis was conducted between two training systems, head-trained (HT) and vertical cordon (VC), along with two irrigation regimes, rainfed and irrigation at 30 % of ET0. The results indicated that the training systems had a more significant impact on production and fruit composition compared to the irrigation treatment. Specifically, the VC system increased yield by ranging from 60% to 80% when compared to the HT system. Additionally, the higher productivity observed in the VC vines led to more optimal source-sink ratios, resulting in a tendency toward delayed ripening. This research provides valuable insights into viticultural practices to improve the productivity and quality of minority varieties such as Maturana Blanca and contributes to a broader understanding of sustainable viticulture and biodiversity preservation in the face of climate change. Moreover, our findings have significant implications to promote the cultivation and valorization of this minority grape variety adapted to semi-arid climates as an adaptation measure to counteract the challenges posed by global warming.

Acknowledgments: We would like to thank the winegrowers Pedro Isaac Balda and Pedro José Balda for their willingness to collaborate with us and the ICVV experimental winery laboratory staff.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Miguel Puelles1*, Pedro Balda2, Andreu Mairata1, David Labarga1, Fernando Martínez de Toda1, Alicia Pou1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño, Spain

2Universidad de La Rioja, c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

source-sink, training system, minority varieties, viticulture, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.