terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Abstract

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions. During two consecutive growing seasons, plants will be either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc). Moreover, different N:K fertilization doses will be applied: 100%N:100%K, 100%N:30%K, 30%N:100%K and 30%N:30%K. Several morphological and physiological parameters will be measured, such as plant growth rate, water potential, photosynthetic rate, and stomatal conductance. In addition, multi-element analysis at the canopy level will be implemented by collecting leaves at flowering, veraison, and maturity stage. Results deriving from the experiment will provide an integrated characterization of the differential response to the single and combined deficits of the two cultivars selected. These results will be useful to find new strategies to increase the sustainability of grapevine cultivation under stressful environmental conditions by optimizing both water use and nutrient acquisition efficiency.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gabriella Vinci1*, Alberto Calderan1,2, Giovanni Anedda1, Matteo Bortolussi1, Marianna Fasoli3, Paolo Sivilotti1, Laura Zanin1

1 Department of Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
2 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
3 Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

viticulture, grapevine, water deficit, nutrient deficiency

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.