terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought responses of grapevine cultivars under different environments

Drought responses of grapevine cultivars under different environments

Abstract

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season. On the one hand, inter-cultivar differences in those traits were confirmed, besides being fairly consistent between environments. On the other hand, for similar pre-dawn water potential among cultivars and environments, midday water potentials and gas exchange rates were lower in Valencia than in Bordeaux. This seems to be related to the higher vapor pressure deficit values in the former, even though leaf turgor loss point was 1 MPa lower in Valencia leaves than in Bordeaux. The leaves of the cultivars from the vineyard in Valencia showed a lower stomatal density and higher modulus of elasticity than their counterparts in Bordeaux. Moreover, both, leaf gas exchange rates and carbon isotope discrimination in grapes revealed that water use efficiency was higher in Valencia than in Bordeaux. Overall, differences among cultivars were milder than across environments, highlighting the high phenotypic plasticity of grapevine cultivars. This points to the importance of plant acclimatization processes in their responses to drought.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

I. Buesa1,2 *, J.G. Pérez-Pérez3, S. Dayer1, M. Gowdy1, J.M. Escalona2, C. Chirivella4, D.S. Intrigliolo5 and G. Gambetta1

1 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, F-33882, Bordeaux (France).
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma (Spain).
3 Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, 46113, Moncada, Valencia (Spain).
4 Instituto Tecnológico de Viticultura y Enología, Servicio de Producción Ecológica, Innovación y Tecnología, Requena, Valencia (Spain).
5 CSIC, Departamento de Ecología y Cambio Global, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113, Moncada, Valencia (Spain).

Contact the author*

Keywords

carbon isotope ratio, leaf gas exchange, hydraulic traits, phenotypic plasticity, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.