terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Drought responses of grapevine cultivars under different environments

Drought responses of grapevine cultivars under different environments

Abstract

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season. On the one hand, inter-cultivar differences in those traits were confirmed, besides being fairly consistent between environments. On the other hand, for similar pre-dawn water potential among cultivars and environments, midday water potentials and gas exchange rates were lower in Valencia than in Bordeaux. This seems to be related to the higher vapor pressure deficit values in the former, even though leaf turgor loss point was 1 MPa lower in Valencia leaves than in Bordeaux. The leaves of the cultivars from the vineyard in Valencia showed a lower stomatal density and higher modulus of elasticity than their counterparts in Bordeaux. Moreover, both, leaf gas exchange rates and carbon isotope discrimination in grapes revealed that water use efficiency was higher in Valencia than in Bordeaux. Overall, differences among cultivars were milder than across environments, highlighting the high phenotypic plasticity of grapevine cultivars. This points to the importance of plant acclimatization processes in their responses to drought.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

I. Buesa1,2 *, J.G. Pérez-Pérez3, S. Dayer1, M. Gowdy1, J.M. Escalona2, C. Chirivella4, D.S. Intrigliolo5 and G. Gambetta1

1 EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, F-33882, Bordeaux (France).
2 Grupo de investigación de Biología de las Plantas en Condiciones Mediterráneas-Universidad de las Islas Baleares (PlantMed-UIB), Cra. de Valldemossa, km 7.5, 07122, Palma (Spain).
3 Instituto Valenciano de Investigaciones Agrarias, Centro para el Desarrollo Agricultura Sostenible, 46113, Moncada, Valencia (Spain).
4 Instituto Tecnológico de Viticultura y Enología, Servicio de Producción Ecológica, Innovación y Tecnología, Requena, Valencia (Spain).
5 CSIC, Departamento de Ecología y Cambio Global, Centro de Investigación sobre Desertificación (CSIC-UV-GV), Carretera CV‑315, km 10.7, 46113, Moncada, Valencia (Spain).

Contact the author*

Keywords

carbon isotope ratio, leaf gas exchange, hydraulic traits, phenotypic plasticity, water relations

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].