terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Abstract

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out. High power ultrasonic assisted extraction is based on the application of mechanical sound waves with frequencies between 20 kHz and 100 kHz inducing acoustic cavitation in a liquid medium, which causes fragmentation and formation of pores in the cells of the cell wall, and leads to increased extraction and diffusion of polysaccharides. While the use of enzymes causes the rupture of the cell walls, hydrolyzing them under optimal experimental conditions and releasing polysaccharides at lower temperatures, avoiding possible changes in the structure and bioactivity of the polysaccharides. Extraction combined with both techniques can increase the extraction yield of polysaccharides and/or reduce the extraction time. In this work, the variables of extractant liquid pH at three levels, US application time at three levels and application of enzymes before or after the US treatment on the polysaccharide extraction yield were studied. All the tests were carried out at 30 kHz, a red pomace/liquid ratio of 1.3 and with a dose of 0.6 ml/Hl of enzymes. In addition, the distribution of the molecular weights of the extracts obtained in the different tests was determined.

Acknowledgments: This research was funded by the Ministry of Science, Innovation and Universities from the Spanish Government and Feder Funds, grant number PID2021-123361OR-C22.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ekhiñe Garaigordobil1, Samuel Mateo Rogríguez1, Diego Canalejo1, Zhao Feng1, Mikel Landín Ross-Magahy1, Leticia Martínez-Lapuente1, Zenaida Guadalupe1, Silvia Pérez Magariño2, Belén Ayestarán1

1Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Spain
2Instituto Tecnológico Agrario de Castilla y León (ITACyL), Spain

Contact the author*

Keywords

pomace, polysaccharides, ultrasound, enzymes, extraction yield

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).