terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Abstract

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out. High power ultrasonic assisted extraction is based on the application of mechanical sound waves with frequencies between 20 kHz and 100 kHz inducing acoustic cavitation in a liquid medium, which causes fragmentation and formation of pores in the cells of the cell wall, and leads to increased extraction and diffusion of polysaccharides. While the use of enzymes causes the rupture of the cell walls, hydrolyzing them under optimal experimental conditions and releasing polysaccharides at lower temperatures, avoiding possible changes in the structure and bioactivity of the polysaccharides. Extraction combined with both techniques can increase the extraction yield of polysaccharides and/or reduce the extraction time. In this work, the variables of extractant liquid pH at three levels, US application time at three levels and application of enzymes before or after the US treatment on the polysaccharide extraction yield were studied. All the tests were carried out at 30 kHz, a red pomace/liquid ratio of 1.3 and with a dose of 0.6 ml/Hl of enzymes. In addition, the distribution of the molecular weights of the extracts obtained in the different tests was determined.

Acknowledgments: This research was funded by the Ministry of Science, Innovation and Universities from the Spanish Government and Feder Funds, grant number PID2021-123361OR-C22.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ekhiñe Garaigordobil1, Samuel Mateo Rogríguez1, Diego Canalejo1, Zhao Feng1, Mikel Landín Ross-Magahy1, Leticia Martínez-Lapuente1, Zenaida Guadalupe1, Silvia Pérez Magariño2, Belén Ayestarán1

1Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Spain
2Instituto Tecnológico Agrario de Castilla y León (ITACyL), Spain

Contact the author*

Keywords

pomace, polysaccharides, ultrasound, enzymes, extraction yield

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.