terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Abstract

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out. High power ultrasonic assisted extraction is based on the application of mechanical sound waves with frequencies between 20 kHz and 100 kHz inducing acoustic cavitation in a liquid medium, which causes fragmentation and formation of pores in the cells of the cell wall, and leads to increased extraction and diffusion of polysaccharides. While the use of enzymes causes the rupture of the cell walls, hydrolyzing them under optimal experimental conditions and releasing polysaccharides at lower temperatures, avoiding possible changes in the structure and bioactivity of the polysaccharides. Extraction combined with both techniques can increase the extraction yield of polysaccharides and/or reduce the extraction time. In this work, the variables of extractant liquid pH at three levels, US application time at three levels and application of enzymes before or after the US treatment on the polysaccharide extraction yield were studied. All the tests were carried out at 30 kHz, a red pomace/liquid ratio of 1.3 and with a dose of 0.6 ml/Hl of enzymes. In addition, the distribution of the molecular weights of the extracts obtained in the different tests was determined.

Acknowledgments: This research was funded by the Ministry of Science, Innovation and Universities from the Spanish Government and Feder Funds, grant number PID2021-123361OR-C22.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ekhiñe Garaigordobil1, Samuel Mateo Rogríguez1, Diego Canalejo1, Zhao Feng1, Mikel Landín Ross-Magahy1, Leticia Martínez-Lapuente1, Zenaida Guadalupe1, Silvia Pérez Magariño2, Belén Ayestarán1

1Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Spain
2Instituto Tecnológico Agrario de Castilla y León (ITACyL), Spain

Contact the author*

Keywords

pomace, polysaccharides, ultrasound, enzymes, extraction yield

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.