terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The evolution of the aromatic composition of carbonic maceration wines

The evolution of the aromatic composition of carbonic maceration wines

Abstract

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

In this study, the aromatic composition evolution of FCM and PCM wines has been evaluated for 18 months and compared to wines elaborated by destemming/crushing.

The results showed a similar evolution in the aromatic composition of the three studied wines, with the total alcohols content almost stable and with an acetate concentration that decreased over time. In contrast, the esters concentration was increased after 18 months in every studied wine. The initial aromatic differences between the wines were maintained throughout the storage, except for the acetates content, that despite being higher in the PCM wines, decreased by a higher amount. Therefore, a quick transformation of the aromatic composition of the PCM that would imply their quick consumption was not observed.

Acknowledgements: This study has been financed from the Project RTI2018-096051-R-C31/C31 (MCIU/AEI/FEDER; UE).

References:

1)  Tesniere C, Flanzy C (2011) Carbonic maceration wines: characteristics and winemaking process. In: Jackson RS (ed) Adv Food Nutr Res. Academic Press Elsevier, Burlington, pp 1-15

2)  Spranger I et al (2004) Differentiation of red winemaking technologies by phenolic and volatile composition. Anal Chim Acta 513:151–161. doi:10.1016/j.aca.2004.01.023

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

P. Santamaría1, J. Portu1, L. González-Arenzana1, P. Garijo1, B. Larreina1 and A.R. Gutiérrez1

1ICVV, Instituto de Ciencias de la Vid y del Vino Gobierno de La Rioja, Universidad de La Rioja, CSIC, Finca La Grajera, Ctra. LO-20- salida 13, 26071, Logroño, Spain.

Contact the author*

Keywords

carbonic maceration, aromatic composition, evolution, storage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.