terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Abstract

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers. Thus, the present study aims to understand in which step of the manufacturing process of microagglomerated cork stoppers, phenolic compounds are eliminated and which polyphenols are likely to migrate into the wine during horizontal storage. Therefore, granulates from three different steps of the manufacturing process and supercritical CO2 water extracts were analyzed regarding their polyphenolic compounds. Polyphenol extraction was performed on granulates (1g) using 80 mL of acetone/water (70/30, v/v) acidified at 0.1% HCOOH in order to achieve a total extraction of polyphenols. Granulate extracts were then evaporated until dryness and recovered with 20 mL of 0.1% HCOOH acidified water. Polyphenols of the resulting samples and the supercritical CO2 water extracts were quantified by HPLC-MS after filtering. The granulates were also extracted with 12% (v/v) ethanol/water to carry out a sensory profile and thus to highlight possible olfactory and/or gustative differences between granulates at the different steps of the manufacturing process.

Acknowledgements: The authors would like to thank Diam Bouchage (Céret, France) for its financial support and for providing samples of granulates and also Christophe Loisel for his expertise in microagglomerated cork manufacturing.

References
1) Taylor, M. K., Young, T. M., Butzke, C. E., & Ebeler, S. E. (2000). Supercritical fluid extraction of 2, 4, 6-trichloroanisole from cork stoppers. Journal of agricultural and food chemistry, 48(6): 2208‑2211, DOI 10.1021/jf991045q
2) Gancel, A.-L., Jourdes, M., Pons, & Teissedre P.-L. (2023). Polyphenol migration from natural and microagglomerated cork stoppers to hydroalcoholic solutions and their sensory impact. Oeno-one (accepted on 3 June 2023).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne-Laure Gancel1, 2, Michaël Jourdes1, 2, Alexandre Pons1, 2, 3 and Pierre-Louis Teissedre1, 2*

1 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2 Bordeaux Sciences Agro, F-33170 Gradignan, France
Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine bottling, microagglomerated cork stoppers, cork granulates, manufacturing process, supercritical CO2, phenolic compounds, sensory analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.