terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Abstract

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers. Thus, the present study aims to understand in which step of the manufacturing process of microagglomerated cork stoppers, phenolic compounds are eliminated and which polyphenols are likely to migrate into the wine during horizontal storage. Therefore, granulates from three different steps of the manufacturing process and supercritical CO2 water extracts were analyzed regarding their polyphenolic compounds. Polyphenol extraction was performed on granulates (1g) using 80 mL of acetone/water (70/30, v/v) acidified at 0.1% HCOOH in order to achieve a total extraction of polyphenols. Granulate extracts were then evaporated until dryness and recovered with 20 mL of 0.1% HCOOH acidified water. Polyphenols of the resulting samples and the supercritical CO2 water extracts were quantified by HPLC-MS after filtering. The granulates were also extracted with 12% (v/v) ethanol/water to carry out a sensory profile and thus to highlight possible olfactory and/or gustative differences between granulates at the different steps of the manufacturing process.

Acknowledgements: The authors would like to thank Diam Bouchage (Céret, France) for its financial support and for providing samples of granulates and also Christophe Loisel for his expertise in microagglomerated cork manufacturing.

References
1) Taylor, M. K., Young, T. M., Butzke, C. E., & Ebeler, S. E. (2000). Supercritical fluid extraction of 2, 4, 6-trichloroanisole from cork stoppers. Journal of agricultural and food chemistry, 48(6): 2208‑2211, DOI 10.1021/jf991045q
2) Gancel, A.-L., Jourdes, M., Pons, & Teissedre P.-L. (2023). Polyphenol migration from natural and microagglomerated cork stoppers to hydroalcoholic solutions and their sensory impact. Oeno-one (accepted on 3 June 2023).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne-Laure Gancel1, 2, Michaël Jourdes1, 2, Alexandre Pons1, 2, 3 and Pierre-Louis Teissedre1, 2*

1 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2 Bordeaux Sciences Agro, F-33170 Gradignan, France
Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine bottling, microagglomerated cork stoppers, cork granulates, manufacturing process, supercritical CO2, phenolic compounds, sensory analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).