terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Abstract

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers. Thus, the present study aims to understand in which step of the manufacturing process of microagglomerated cork stoppers, phenolic compounds are eliminated and which polyphenols are likely to migrate into the wine during horizontal storage. Therefore, granulates from three different steps of the manufacturing process and supercritical CO2 water extracts were analyzed regarding their polyphenolic compounds. Polyphenol extraction was performed on granulates (1g) using 80 mL of acetone/water (70/30, v/v) acidified at 0.1% HCOOH in order to achieve a total extraction of polyphenols. Granulate extracts were then evaporated until dryness and recovered with 20 mL of 0.1% HCOOH acidified water. Polyphenols of the resulting samples and the supercritical CO2 water extracts were quantified by HPLC-MS after filtering. The granulates were also extracted with 12% (v/v) ethanol/water to carry out a sensory profile and thus to highlight possible olfactory and/or gustative differences between granulates at the different steps of the manufacturing process.

Acknowledgements: The authors would like to thank Diam Bouchage (Céret, France) for its financial support and for providing samples of granulates and also Christophe Loisel for his expertise in microagglomerated cork manufacturing.

References
1) Taylor, M. K., Young, T. M., Butzke, C. E., & Ebeler, S. E. (2000). Supercritical fluid extraction of 2, 4, 6-trichloroanisole from cork stoppers. Journal of agricultural and food chemistry, 48(6): 2208‑2211, DOI 10.1021/jf991045q
2) Gancel, A.-L., Jourdes, M., Pons, & Teissedre P.-L. (2023). Polyphenol migration from natural and microagglomerated cork stoppers to hydroalcoholic solutions and their sensory impact. Oeno-one (accepted on 3 June 2023).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne-Laure Gancel1, 2, Michaël Jourdes1, 2, Alexandre Pons1, 2, 3 and Pierre-Louis Teissedre1, 2*

1 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2 Bordeaux Sciences Agro, F-33170 Gradignan, France
Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine bottling, microagglomerated cork stoppers, cork granulates, manufacturing process, supercritical CO2, phenolic compounds, sensory analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).