terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

Abstract

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers. Thus, the present study aims to understand in which step of the manufacturing process of microagglomerated cork stoppers, phenolic compounds are eliminated and which polyphenols are likely to migrate into the wine during horizontal storage. Therefore, granulates from three different steps of the manufacturing process and supercritical CO2 water extracts were analyzed regarding their polyphenolic compounds. Polyphenol extraction was performed on granulates (1g) using 80 mL of acetone/water (70/30, v/v) acidified at 0.1% HCOOH in order to achieve a total extraction of polyphenols. Granulate extracts were then evaporated until dryness and recovered with 20 mL of 0.1% HCOOH acidified water. Polyphenols of the resulting samples and the supercritical CO2 water extracts were quantified by HPLC-MS after filtering. The granulates were also extracted with 12% (v/v) ethanol/water to carry out a sensory profile and thus to highlight possible olfactory and/or gustative differences between granulates at the different steps of the manufacturing process.

Acknowledgements: The authors would like to thank Diam Bouchage (Céret, France) for its financial support and for providing samples of granulates and also Christophe Loisel for his expertise in microagglomerated cork manufacturing.

References
1) Taylor, M. K., Young, T. M., Butzke, C. E., & Ebeler, S. E. (2000). Supercritical fluid extraction of 2, 4, 6-trichloroanisole from cork stoppers. Journal of agricultural and food chemistry, 48(6): 2208‑2211, DOI 10.1021/jf991045q
2) Gancel, A.-L., Jourdes, M., Pons, & Teissedre P.-L. (2023). Polyphenol migration from natural and microagglomerated cork stoppers to hydroalcoholic solutions and their sensory impact. Oeno-one (accepted on 3 June 2023).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Anne-Laure Gancel1, 2, Michaël Jourdes1, 2, Alexandre Pons1, 2, 3 and Pierre-Louis Teissedre1, 2*

1 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2 Bordeaux Sciences Agro, F-33170 Gradignan, France
Tonnellerie Seguin-Moreau, ZI Merpins, 16103, Cognac, France

Contact the author*

Keywords

wine bottling, microagglomerated cork stoppers, cork granulates, manufacturing process, supercritical CO2, phenolic compounds, sensory analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.