terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Abstract

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method. A completely randomized design was applied in triplicate. The treatments were: T1, 135 days of lees contact (LC); T2, 180 days LC; T3, 270 days LC; and T4, 360 days LC. General chemical analyses were carried out according to OIV methods, proteins and polysaccharides characterization by HRSEC-RID, and sensory analyses using the flash profile technique. The base wines had the following analytical parameters: total acidity 7.0 ± 0.5 g/L; pH 3.20 ± 0.15; alcohol 12.0 ± 0.2 % v/v, and volatile acidity 0.35 ± 0.15 g/L. At the sensory level, in the Moscatel Rosado wines, floral and fruity notes were prominent in T1 and T2, decreasing towards T3 and T4. For the Pedro Giménez and Blanca Oval varieties, fruit descriptors predominated in T1 and T2, which then decreased significantly over time (T3 and T4). Criolla Chica and Canelón were characterized by attributes of nuts and toasted bread, especially with longer lees contact time. In general, all varieties showed good balance in the mouth, but Chardonnay stood apart from the rest, with descriptors such as yeast, mouthfeel, and higher color intensity. These results revealed the technological potential of autochthonous genetic material to diversify the production of sparkling wines, providing regional identity.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Santiago Sari1, Constanza Gaitieri2, Jorge Prieto1,3, Mariela Assof1,3, Anibal Catania1, Rebeca Murillo-Peña4*, Sofía Villalobos5, Jordi Gombau5, Fernando Zamora5, Martín Fanzone 1,3

1Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Mendoza. San Martín 3853. CP 5507EVY, Luján de Cuyo, Mendoza, Argentina.
2Malpensado Wines, Mendoza, Argentina.
3Universidad Juan Agustín Maza. Centro de Estudios Vitícolas y Agroindustriales. Lateral Sur del Acceso Este 2245.CP 5519 Guaymallén, Mendoza, Argentina.
4Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja). Ctra. de Burgos, Km. 6. CP 26007 Logroño, La Rioja, España.
5Universidad Rovira i Virgili. Facultad de Enología. Departamento de Bioquímica y Biotecnología. C/Marcel.li Domingo s/n, 43007 Tarragona, España.

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.