terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physico-chemical properties of vine pruning residues with potential as enological additive

Physico-chemical properties of vine pruning residues with potential as enological additive

Abstract

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021. Samples were characterized by thermal analysis (TGA and DTG), color analysis, and their phenolic composition was analyzed using spectrophotometric and chromatographic techniques. Then, small pieces of wood samples were subjected to a toasting process, placed in contact with model wines (7 days), and compared against oak wood as a control treatment. The model wines obtained were also analyzed their total phenolic content (Folin-Ciocalteu) and antioxidant activity (DPPH). Thermal analysis showed that grapevine shoots from different cultivars had similar temperature intervals for mass losses, but both their color and phenolic composition varied according to grape variety. Like so, the model wines in contact with toasted oak wood pieces obtained from vine-shoots showed differences in their phenolic content and antioxidant capacity. Besides the prior, other compositional features of the vine shoots and treated model wines would be discussed.

Acknowledgements: Thanks to Consorcio Sur-Subantártico Ci2030-ANID Nº20CEIN2-142146 and FIC project Bip 40.047.041-0 for their financial support, and to Univiveros and CII Viña Concha y Toro for providing the vegetal materials.

References:

1)  Çetin, E.S. et al. (2011).  Chemical composition of grape canes. Ind. Crop Prod., 34, 994–998, DOI 10.1016/j.indcrop.2011.03.004

2)  Aliaño-González, M.J. et al. (2022). Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 12 238. DOI 10.3390/biom12020238

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

V. Felipe Laurie1*, Verónica Olate-Olave1,2, Ricardo I. Castro3, Clara Silva1

1Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
2Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
3Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca, Chile

Contact the author*

Keywords

vine pruning shoots, phenolic compounds, waste valorization

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.