terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physico-chemical properties of vine pruning residues with potential as enological additive

Physico-chemical properties of vine pruning residues with potential as enological additive

Abstract

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021. Samples were characterized by thermal analysis (TGA and DTG), color analysis, and their phenolic composition was analyzed using spectrophotometric and chromatographic techniques. Then, small pieces of wood samples were subjected to a toasting process, placed in contact with model wines (7 days), and compared against oak wood as a control treatment. The model wines obtained were also analyzed their total phenolic content (Folin-Ciocalteu) and antioxidant activity (DPPH). Thermal analysis showed that grapevine shoots from different cultivars had similar temperature intervals for mass losses, but both their color and phenolic composition varied according to grape variety. Like so, the model wines in contact with toasted oak wood pieces obtained from vine-shoots showed differences in their phenolic content and antioxidant capacity. Besides the prior, other compositional features of the vine shoots and treated model wines would be discussed.

Acknowledgements: Thanks to Consorcio Sur-Subantártico Ci2030-ANID Nº20CEIN2-142146 and FIC project Bip 40.047.041-0 for their financial support, and to Univiveros and CII Viña Concha y Toro for providing the vegetal materials.

References:

1)  Çetin, E.S. et al. (2011).  Chemical composition of grape canes. Ind. Crop Prod., 34, 994–998, DOI 10.1016/j.indcrop.2011.03.004

2)  Aliaño-González, M.J. et al. (2022). Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 12 238. DOI 10.3390/biom12020238

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

V. Felipe Laurie1*, Verónica Olate-Olave1,2, Ricardo I. Castro3, Clara Silva1

1Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
2Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
3Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca, Chile

Contact the author*

Keywords

vine pruning shoots, phenolic compounds, waste valorization

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.