terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physico-chemical properties of vine pruning residues with potential as enological additive

Physico-chemical properties of vine pruning residues with potential as enological additive

Abstract

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021. Samples were characterized by thermal analysis (TGA and DTG), color analysis, and their phenolic composition was analyzed using spectrophotometric and chromatographic techniques. Then, small pieces of wood samples were subjected to a toasting process, placed in contact with model wines (7 days), and compared against oak wood as a control treatment. The model wines obtained were also analyzed their total phenolic content (Folin-Ciocalteu) and antioxidant activity (DPPH). Thermal analysis showed that grapevine shoots from different cultivars had similar temperature intervals for mass losses, but both their color and phenolic composition varied according to grape variety. Like so, the model wines in contact with toasted oak wood pieces obtained from vine-shoots showed differences in their phenolic content and antioxidant capacity. Besides the prior, other compositional features of the vine shoots and treated model wines would be discussed.

Acknowledgements: Thanks to Consorcio Sur-Subantártico Ci2030-ANID Nº20CEIN2-142146 and FIC project Bip 40.047.041-0 for their financial support, and to Univiveros and CII Viña Concha y Toro for providing the vegetal materials.

References:

1)  Çetin, E.S. et al. (2011).  Chemical composition of grape canes. Ind. Crop Prod., 34, 994–998, DOI 10.1016/j.indcrop.2011.03.004

2)  Aliaño-González, M.J. et al. (2022). Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 12 238. DOI 10.3390/biom12020238

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

V. Felipe Laurie1*, Verónica Olate-Olave1,2, Ricardo I. Castro3, Clara Silva1

1Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
2Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
3Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca, Chile

Contact the author*

Keywords

vine pruning shoots, phenolic compounds, waste valorization

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.