terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 A sensometabolomic approach to understand wine mouthfeel percepts

A sensometabolomic approach to understand wine mouthfeel percepts

Abstract

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLCQTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins. The compounds with negative contribution were flavonols, hydroxycinnamic acids, and malvidin-ethyl-flavan-3-ol, which agreed with the results of the PLS model obtained from targeted analysis. The relevance of phenolics to the “dry” sensation was sensible, but the predictive models obtained for “unctuous” and “oily” also showed that the chemical composition analyzed was involved in both mouthfeel sensations. The UPLCQTOF-MS has allowed to identify a tripeptide with important implication in “dry”, develop “oily” and “unctuous” models and confirm again the involvement of anthocyanins in mouthfeel perception of red wines. This sensometabolomic approach has found strong correlations between some perceived sensations and the chemical compounds analyzed. The role of the key compounds identified will need to be confirmed in future studies.

Acknowledgements: MICIN (AGL-2017-87373-C3-3-R & PID2021-126031OB-C22 FEDER, UE). SFT: University of La Rioja (predoctoral fellowship, UR-CAR-2018). MPSN: MICIN (RYC2019-027995-I/AEI/10.13039/501100011033 & CAS21/00221). PA & FM: (AdP 2019 by the Autonomous Province of Trento, Italy).

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Sara Ferrero-del-Teso1, Panagiotis Arapitsas2,3, David W. Jeffery4, Chelo Ferreira5, Fulvio Mattivi2, Purificación Fernández-Zurbano1*, María-Pilar Sáenz-Navajas1

1Instituto de Ciencias de la Vid y del Vino (UR-CSIC-GR) Department of Enology, Logroño, La Rioja, Spain

2Unit of Metabolomics, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy.

3Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Ag. Spyridonos 28, Egaleo, 12243 Athens, Greece.

4School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia.

5Laboratorio de Análisis del Aroma y Enología (LAAE), Instituto Universitario de Matemáticas y Aplicaciones (IUMA-UNIZAR), Universidad de Zaragoza, c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain.

Contact the author*

Keywords

untargeted analysis, metabolomics, PLS regression, sensory analysis, UPLCQTOF

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.