terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress


The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses. We discovered 1,174 and 1,245 new genes for the V. rupestris and V. berlandieri haplotype, respectively. We profiled gene expression on the newly generated transcriptome and identified differentially expressed genes (DEGs) under different stress conditions. Interestingly, among the DEGs we identified different functions on each haplotype, hinting at specific contributions from each parental genome, such as ion transportation or biological process involved in interspecies interaction between organisms. These results demonstrate the value of integrating expression data from more tissues to increase the detection of genes during genome annotations and highlight the value of diploid phased genome references to investigate the contributions of each parental genome in hybrid organisms.

Acknowledgements: Special acknowledgement to the Spanish government grant PRE2019-088446 and the project PID2021-125575OR-C21


1)  Velt A. et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3-GENES GENOM GENET, 13 (5) jkad067, DOI 10.1093/g3journal/jkad067

2)  Minio A. et al. (2022). HiFi chromosome-scale diploid assemblies of the grape rootstocks 110R, Kober 5BB, and 101–14 Mgt. Sci. Data., 9: 660, DOI 10.1038/s41597-022-01753-0


Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster


Alberto Rodriguez-Izquierdo1*, Sara Pascual-El Bobakri1, David Carrasco1, Rosa Arroyo-Garcia1*

1Center for Plant Biotechnology and Genomics (CBGP-UPM-INIA-CSIC)-Universidad Politécnica de Madrid, Campus Montegancedo UPM, Madrid, Spain

Contact the author*


rootstock, transcriptome, haplotype, 110 Richter, curation, hybrid, DEG


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions.
Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.