terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Optimization of the acquisition of NIR spectrum in grape must and wine 

Optimization of the acquisition of NIR spectrum in grape must and wine 

Abstract

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

This work focuses on the evaluation of the optimal parameters and pathlengths for fast measurement of the UV/VIS/NIR/MIR spectra in grape must and wine. The study was carried out with three different type of samples: (i) red wine cv Mencía, (ii) white wine cv Albariño, and (iii) grape must cv Albariño. Absorbance spectra were collected in rectangular quartz cuvettes of different optical pathlengths (1, 2, 5, and 10 mm) where different bandwidth parameters were tested.

The results indicated that increasing the optical pathlengths of the cuvettes increases the absorption intensity up to a saturation level (absorbance >2.5 units) at long wavelengths using long pathlengths (5 and 10 mm). The interpretation of the spectra also improves with 1 and 2 mm pathlengths. The bandwidth parameters evaluated indicated that using higher values, the spectrum appeared more defined, and the range of analysis was increased, reaching the MIR part of the spectrum.  In conclusion, the best combination of pathlength and bandwidth for the measurement of grape must and wine in the UV/VIS/NIR/MIR range is 1 mm of pathlength cuvette with the bandwidth set at 40 nm.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Manzano JI.1, Cozzolino D.2, Vilanova M.1

1 Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño (España)
2 Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, (Australia)

Contact the author*

Keywords

NIR, wine, must, cuvette, bandwidth

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.