terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Abstract

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal  and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated. The volatile composition was analyzed by LLE/GC-MS, allowing the quantification of 64 different compounds. The data was treated by PCA with XLSTAT-software, being the wines separated by countries. The first two principal components explained 100 % of the total variance. The variables which most influence the first component were acetates and esters (Isopentyl acetate, isoamyl acetate and diethyl malate) and volatile acids families, while the second was influenced by lactones and C6 families. The Argentine wines were separated by lactones and aldehydes and esters however the Spain wines by volatile phenols, volatile acid and the Portugal wine by less volatile acid. The Portuguese wines from the three vintages were separated based on their volatile composition. The first component was explained by aldehydes and volatile acids and the second component by volatile phenols and volatile alcohols.

Acknowledgements:

H2020-MSCA-RISE-2019: Project 872394. vWISE-Vine and Wine Innovation through Scientific Exchange. Research and Innovation Staff Exchange (RISE). We also thank to ICVV analytical service.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Leonor Deis1, Liliana Martinez2, Bianca Sousa3, Marta Dizy4, Jorge Ricardo-da-Silva5, Sofia Catarino5,6, Mar Vilanova3

1 Fisiología Vegetal, Facultad de Ciencias Agrarias . Universidad Nacional de Cuyo. Mendoza, Argentina.
2Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina.
3Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja España. 4Universidad de La Rioja, Departamento de Agricultura y Alimentación, C/ Madre de Dios, 51, 26006 Logroño. La Rioja.
España.
5LEAF – Linking Landscape Environment Agriculture and Food Research Center, Instituto Superior de Agronomia, Associate Laboratory TERRA, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal. 6CeFEMA – Centre of Physics and Engineering of Advanced Materials Research Center, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

red wine, volatile composition, Cabernet Sauvignon, producing country

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.