terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Abstract

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal  and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated. The volatile composition was analyzed by LLE/GC-MS, allowing the quantification of 64 different compounds. The data was treated by PCA with XLSTAT-software, being the wines separated by countries. The first two principal components explained 100 % of the total variance. The variables which most influence the first component were acetates and esters (Isopentyl acetate, isoamyl acetate and diethyl malate) and volatile acids families, while the second was influenced by lactones and C6 families. The Argentine wines were separated by lactones and aldehydes and esters however the Spain wines by volatile phenols, volatile acid and the Portugal wine by less volatile acid. The Portuguese wines from the three vintages were separated based on their volatile composition. The first component was explained by aldehydes and volatile acids and the second component by volatile phenols and volatile alcohols.

Acknowledgements:

H2020-MSCA-RISE-2019: Project 872394. vWISE-Vine and Wine Innovation through Scientific Exchange. Research and Innovation Staff Exchange (RISE). We also thank to ICVV analytical service.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Leonor Deis1, Liliana Martinez2, Bianca Sousa3, Marta Dizy4, Jorge Ricardo-da-Silva5, Sofia Catarino5,6, Mar Vilanova3

1 Fisiología Vegetal, Facultad de Ciencias Agrarias . Universidad Nacional de Cuyo. Mendoza, Argentina.
2Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina.
3Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja España. 4Universidad de La Rioja, Departamento de Agricultura y Alimentación, C/ Madre de Dios, 51, 26006 Logroño. La Rioja.
España.
5LEAF – Linking Landscape Environment Agriculture and Food Research Center, Instituto Superior de Agronomia, Associate Laboratory TERRA, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal. 6CeFEMA – Centre of Physics and Engineering of Advanced Materials Research Center, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

red wine, volatile composition, Cabernet Sauvignon, producing country

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.