terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Abstract

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal  and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated. The volatile composition was analyzed by LLE/GC-MS, allowing the quantification of 64 different compounds. The data was treated by PCA with XLSTAT-software, being the wines separated by countries. The first two principal components explained 100 % of the total variance. The variables which most influence the first component were acetates and esters (Isopentyl acetate, isoamyl acetate and diethyl malate) and volatile acids families, while the second was influenced by lactones and C6 families. The Argentine wines were separated by lactones and aldehydes and esters however the Spain wines by volatile phenols, volatile acid and the Portugal wine by less volatile acid. The Portuguese wines from the three vintages were separated based on their volatile composition. The first component was explained by aldehydes and volatile acids and the second component by volatile phenols and volatile alcohols.

Acknowledgements:

H2020-MSCA-RISE-2019: Project 872394. vWISE-Vine and Wine Innovation through Scientific Exchange. Research and Innovation Staff Exchange (RISE). We also thank to ICVV analytical service.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Leonor Deis1, Liliana Martinez2, Bianca Sousa3, Marta Dizy4, Jorge Ricardo-da-Silva5, Sofia Catarino5,6, Mar Vilanova3

1 Fisiología Vegetal, Facultad de Ciencias Agrarias . Universidad Nacional de Cuyo. Mendoza, Argentina.
2Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina.
3Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja España. 4Universidad de La Rioja, Departamento de Agricultura y Alimentación, C/ Madre de Dios, 51, 26006 Logroño. La Rioja.
España.
5LEAF – Linking Landscape Environment Agriculture and Food Research Center, Instituto Superior de Agronomia, Associate Laboratory TERRA, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal. 6CeFEMA – Centre of Physics and Engineering of Advanced Materials Research Center, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal.

Contact the author*

Keywords

red wine, volatile composition, Cabernet Sauvignon, producing country

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.