terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

Abstract

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency). For this, three red wines with each type of additive and a control wine without them were prepared. All the wines were aromatized with two aroma mixtures responsible for the “fruity” and “woody” aroma nuances. Retronasal aroma and astringency were evaluated at the same time using a dynamic sensory methodology (Time-Intensity) and a trained panel (n=40), consisted of non-tasters (n=20) and tasters (n=20) based on their PROP (6-n-propylthiouracil) responsiveness. The parameters AUC (area under the curve), I max (maximum intensity), T max (time to reach maximum intensity) and T end (time at which the aroma attribute is no longer perceived) were evaluated for each wine type to assess the effect of these additives on the dynamics of flavor perception. Results showed significant differences (p<0.05) in the perception of astringency according to PROP phenotype; tasting PROP individuals showed higher values for most T-I parameters than non-tasters. However, the PROP phenotype did not affect the perception of retronasal aroma. In addition, the three oenological additives had an effect on astringency and retronasal aroma perception. For instance, they significantly increased the long-lasting perception of astringency compared to the control, while gallotannin also increased the long-lasting persistence of the woody aroma.

Acknowledgements: Authors acknowledge AEI and MICIN for the financial support (Project PID2019-11734-RB-I00) and all the participants in this study.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pozo-Bayón, Maria Angeles*, Velazquez-Martínez, Rafael I., Criado Celia, Muñoz-González Carolina

Instituto de investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, 28049, Madrid, Spain

Contact the author*

Keywords

wine, oenotannins, mannoproteins, flavour persistence, PROP taste phenotype, Time-intensity sensory analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.