terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

Abstract

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency). For this, three red wines with each type of additive and a control wine without them were prepared. All the wines were aromatized with two aroma mixtures responsible for the “fruity” and “woody” aroma nuances. Retronasal aroma and astringency were evaluated at the same time using a dynamic sensory methodology (Time-Intensity) and a trained panel (n=40), consisted of non-tasters (n=20) and tasters (n=20) based on their PROP (6-n-propylthiouracil) responsiveness. The parameters AUC (area under the curve), I max (maximum intensity), T max (time to reach maximum intensity) and T end (time at which the aroma attribute is no longer perceived) were evaluated for each wine type to assess the effect of these additives on the dynamics of flavor perception. Results showed significant differences (p<0.05) in the perception of astringency according to PROP phenotype; tasting PROP individuals showed higher values for most T-I parameters than non-tasters. However, the PROP phenotype did not affect the perception of retronasal aroma. In addition, the three oenological additives had an effect on astringency and retronasal aroma perception. For instance, they significantly increased the long-lasting perception of astringency compared to the control, while gallotannin also increased the long-lasting persistence of the woody aroma.

Acknowledgements: Authors acknowledge AEI and MICIN for the financial support (Project PID2019-11734-RB-I00) and all the participants in this study.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pozo-Bayón, Maria Angeles*, Velazquez-Martínez, Rafael I., Criado Celia, Muñoz-González Carolina

Instituto de investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, 28049, Madrid, Spain

Contact the author*

Keywords

wine, oenotannins, mannoproteins, flavour persistence, PROP taste phenotype, Time-intensity sensory analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.