GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Abstract

Context and Purpose of the Study – ‘Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues. It was necessary to understand the natural variations in the vineyard as well as the application of proximal sensing to monitor, and estimate these variations to get desirable attributes in this cultivar. The objective of this study was to use of proximal and remote sensing tools, specifically soil electrical conductivity (EC), canopy normalized difference vegetation index (NDVI), and carbon isotope discrimination in a precision agriculture context, to assess the water status variability, and determine the effect of inferred variability on skin anthocyanin and flavonol concentration at harvest.

Material and Methods – A ‘Crimson Seedless’ (V. vinifera L.) grafted on to ‘Freedom’ (27% vinifera hybrid) rootstock vineyard was studied for two years with contrasting precipitation amounts. Soil electrical conductivity (EC) was proximally sensed with electromagnetic induction and canopy reflectance was sensed remotely to calculate normalized difference vegetation index (NDVI). Random and equi-distant (30 m × 30 m) sampling grids were utilized in 2016 and 2017 to ground truth proximally sensed data. Grape primary metabolites, including total soluble solids, total acidity, isotopic discrimination of berry sugars (δ13C) and pH were measured, and secondary metabolites were characterized with a C18 reversed-phase HPLC.

Results – Soil EC was related to the variation of season-long plant water status in 2016 (Deep EC: r = -0.71; Surface EC: r = -0.53). There was not a significant relationship between NDVI and plant water status in either year.  The vineyard was separated and delineated into two water status zones based on stem water potential (􀀁stem) in each year, and the water status between two zones were significantly and consistently different. The juice pH showed significant differences between two zones. The δ13C was directly and significantly related to 􀀁stem integrals and the differences between the two water status zones were confirmed by either method in 2016. There were no differences in total anthocyanins in 2016. However, anthocyanin derivatives were greater in the low water status zone in the following year. Flavonol amounts were not consistently different between the two zones in either year. Our results indicated deep soil EC, season-long water status or δ13C can be used interchangeably to spatialize and cluster management zones in commercial table grape vineyards.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, S. Kaan KURTURAL1

(1) Dept. of Viticulture and Enology, University of California, Davis, CA, 95616, USA
(2) Dept. of Viticulture and Enology, California State University, Fresno, CA, 93704, USA

Contact the author

Keywords

Crimson Seedless, table grapes, anthocyanins, flavonoids, water status, electrical conductivity, normalized difference vegetation index (NDVI), spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Aptitude du cépage Chenin à l’élaboration de vins liquoreux en relation avec certaines unités terroirs de base de A.O.C. Coteaux du Layon

Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.