GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Abstract

Context and Purpose of the Study – ‘Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues. It was necessary to understand the natural variations in the vineyard as well as the application of proximal sensing to monitor, and estimate these variations to get desirable attributes in this cultivar. The objective of this study was to use of proximal and remote sensing tools, specifically soil electrical conductivity (EC), canopy normalized difference vegetation index (NDVI), and carbon isotope discrimination in a precision agriculture context, to assess the water status variability, and determine the effect of inferred variability on skin anthocyanin and flavonol concentration at harvest.

Material and Methods – A ‘Crimson Seedless’ (V. vinifera L.) grafted on to ‘Freedom’ (27% vinifera hybrid) rootstock vineyard was studied for two years with contrasting precipitation amounts. Soil electrical conductivity (EC) was proximally sensed with electromagnetic induction and canopy reflectance was sensed remotely to calculate normalized difference vegetation index (NDVI). Random and equi-distant (30 m × 30 m) sampling grids were utilized in 2016 and 2017 to ground truth proximally sensed data. Grape primary metabolites, including total soluble solids, total acidity, isotopic discrimination of berry sugars (δ13C) and pH were measured, and secondary metabolites were characterized with a C18 reversed-phase HPLC.

Results – Soil EC was related to the variation of season-long plant water status in 2016 (Deep EC: r = -0.71; Surface EC: r = -0.53). There was not a significant relationship between NDVI and plant water status in either year.  The vineyard was separated and delineated into two water status zones based on stem water potential (􀀁stem) in each year, and the water status between two zones were significantly and consistently different. The juice pH showed significant differences between two zones. The δ13C was directly and significantly related to 􀀁stem integrals and the differences between the two water status zones were confirmed by either method in 2016. There were no differences in total anthocyanins in 2016. However, anthocyanin derivatives were greater in the low water status zone in the following year. Flavonol amounts were not consistently different between the two zones in either year. Our results indicated deep soil EC, season-long water status or δ13C can be used interchangeably to spatialize and cluster management zones in commercial table grape vineyards.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, S. Kaan KURTURAL1

(1) Dept. of Viticulture and Enology, University of California, Davis, CA, 95616, USA
(2) Dept. of Viticulture and Enology, California State University, Fresno, CA, 93704, USA

Contact the author

Keywords

Crimson Seedless, table grapes, anthocyanins, flavonoids, water status, electrical conductivity, normalized difference vegetation index (NDVI), spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.
Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.
This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.

A microwave digestion ICP-MS method for grapevine bark elemental profiling

A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS.

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

«Promitheus» the new greek red wine grape arromatic variety

This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.