GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Abstract

Context and Purpose of the Study – ‘Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues. It was necessary to understand the natural variations in the vineyard as well as the application of proximal sensing to monitor, and estimate these variations to get desirable attributes in this cultivar. The objective of this study was to use of proximal and remote sensing tools, specifically soil electrical conductivity (EC), canopy normalized difference vegetation index (NDVI), and carbon isotope discrimination in a precision agriculture context, to assess the water status variability, and determine the effect of inferred variability on skin anthocyanin and flavonol concentration at harvest.

Material and Methods – A ‘Crimson Seedless’ (V. vinifera L.) grafted on to ‘Freedom’ (27% vinifera hybrid) rootstock vineyard was studied for two years with contrasting precipitation amounts. Soil electrical conductivity (EC) was proximally sensed with electromagnetic induction and canopy reflectance was sensed remotely to calculate normalized difference vegetation index (NDVI). Random and equi-distant (30 m × 30 m) sampling grids were utilized in 2016 and 2017 to ground truth proximally sensed data. Grape primary metabolites, including total soluble solids, total acidity, isotopic discrimination of berry sugars (δ13C) and pH were measured, and secondary metabolites were characterized with a C18 reversed-phase HPLC.

Results – Soil EC was related to the variation of season-long plant water status in 2016 (Deep EC: r = -0.71; Surface EC: r = -0.53). There was not a significant relationship between NDVI and plant water status in either year.  The vineyard was separated and delineated into two water status zones based on stem water potential (􀀁stem) in each year, and the water status between two zones were significantly and consistently different. The juice pH showed significant differences between two zones. The δ13C was directly and significantly related to 􀀁stem integrals and the differences between the two water status zones were confirmed by either method in 2016. There were no differences in total anthocyanins in 2016. However, anthocyanin derivatives were greater in the low water status zone in the following year. Flavonol amounts were not consistently different between the two zones in either year. Our results indicated deep soil EC, season-long water status or δ13C can be used interchangeably to spatialize and cluster management zones in commercial table grape vineyards.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, S. Kaan KURTURAL1

(1) Dept. of Viticulture and Enology, University of California, Davis, CA, 95616, USA
(2) Dept. of Viticulture and Enology, California State University, Fresno, CA, 93704, USA

Contact the author

Keywords

Crimson Seedless, table grapes, anthocyanins, flavonoids, water status, electrical conductivity, normalized difference vegetation index (NDVI), spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Riqualificazione dell’antica “Terra di Lavoro” attraverso il rilancio della cultivar Abbuoto

L’agricoltura dei territori costituenti l’antica “Terra di Lavoro”, territorio che oggi è compreso nella provincia di Caserta ed in parte di quelle di Frosinone e Latina, ha subito a partire dal 1970

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Montpellier vine & wine sciences (M-WineS)

The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.