GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Abstract

Context and Purpose of the Study – ‘Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues. It was necessary to understand the natural variations in the vineyard as well as the application of proximal sensing to monitor, and estimate these variations to get desirable attributes in this cultivar. The objective of this study was to use of proximal and remote sensing tools, specifically soil electrical conductivity (EC), canopy normalized difference vegetation index (NDVI), and carbon isotope discrimination in a precision agriculture context, to assess the water status variability, and determine the effect of inferred variability on skin anthocyanin and flavonol concentration at harvest.

Material and Methods – A ‘Crimson Seedless’ (V. vinifera L.) grafted on to ‘Freedom’ (27% vinifera hybrid) rootstock vineyard was studied for two years with contrasting precipitation amounts. Soil electrical conductivity (EC) was proximally sensed with electromagnetic induction and canopy reflectance was sensed remotely to calculate normalized difference vegetation index (NDVI). Random and equi-distant (30 m × 30 m) sampling grids were utilized in 2016 and 2017 to ground truth proximally sensed data. Grape primary metabolites, including total soluble solids, total acidity, isotopic discrimination of berry sugars (δ13C) and pH were measured, and secondary metabolites were characterized with a C18 reversed-phase HPLC.

Results – Soil EC was related to the variation of season-long plant water status in 2016 (Deep EC: r = -0.71; Surface EC: r = -0.53). There was not a significant relationship between NDVI and plant water status in either year.  The vineyard was separated and delineated into two water status zones based on stem water potential (􀀁stem) in each year, and the water status between two zones were significantly and consistently different. The juice pH showed significant differences between two zones. The δ13C was directly and significantly related to 􀀁stem integrals and the differences between the two water status zones were confirmed by either method in 2016. There were no differences in total anthocyanins in 2016. However, anthocyanin derivatives were greater in the low water status zone in the following year. Flavonol amounts were not consistently different between the two zones in either year. Our results indicated deep soil EC, season-long water status or δ13C can be used interchangeably to spatialize and cluster management zones in commercial table grape vineyards.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Runze YU1, Luca BRILLANTE2, Johann MARTÍNEZ-LÜSCHER1, S. Kaan KURTURAL1

(1) Dept. of Viticulture and Enology, University of California, Davis, CA, 95616, USA
(2) Dept. of Viticulture and Enology, California State University, Fresno, CA, 93704, USA

Contact the author

Keywords

Crimson Seedless, table grapes, anthocyanins, flavonoids, water status, electrical conductivity, normalized difference vegetation index (NDVI), spatial variability, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle.

Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

New grape varieties with several resistance loci towards powdery and downy mildew allows to significantly reduce the use of fungicides

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

Comparison of destructive and non-destructive measurements of table grape berries to assess quality parameters using spectroscopy

The quality of table grapes is critically influenced by several parameters, including sugar content, acidity, firmness, and overall appearance.