GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards


Context and Purpose of the Study – ‘Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues. It was necessary to understand the natural variations in the vineyard as well as the application of proximal sensing to monitor, and estimate these variations to get desirable attributes in this cultivar. The objective of this study was to use of proximal and remote sensing tools, specifically soil electrical conductivity (EC), canopy normalized difference vegetation index (NDVI), and carbon isotope discrimination in a precision agriculture context, to assess the water status variability, and determine the effect of inferred variability on skin anthocyanin and flavonol concentration at harvest.

Material and Methods – A ‘Crimson Seedless’ (V. vinifera L.) grafted on to ‘Freedom’ (27% vinifera hybrid) rootstock vineyard was studied for two years with contrasting precipitation amounts. Soil electrical conductivity (EC) was proximally sensed with electromagnetic induction and canopy reflectance was sensed remotely to calculate normalized difference vegetation index (NDVI). Random and equi-distant (30 m × 30 m) sampling grids were utilized in 2016 and 2017 to ground truth proximally sensed data. Grape primary metabolites, including total soluble solids, total acidity, isotopic discrimination of berry sugars (δ13C) and pH were measured, and secondary metabolites were characterized with a C18 reversed-phase HPLC.

Results – Soil EC was related to the variation of season-long plant water status in 2016 (Deep EC: r = -0.71; Surface EC: r = -0.53). There was not a significant relationship between NDVI and plant water status in either year.  The vineyard was separated and delineated into two water status zones based on stem water potential (􀀁stem) in each year, and the water status between two zones were significantly and consistently different. The juice pH showed significant differences between two zones. The δ13C was directly and significantly related to 􀀁stem integrals and the differences between the two water status zones were confirmed by either method in 2016. There were no differences in total anthocyanins in 2016. However, anthocyanin derivatives were greater in the low water status zone in the following year. Flavonol amounts were not consistently different between the two zones in either year. Our results indicated deep soil EC, season-long water status or δ13C can be used interchangeably to spatialize and cluster management zones in commercial table grape vineyards.


Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster



(1) Dept. of Viticulture and Enology, University of California, Davis, CA, 95616, USA
(2) Dept. of Viticulture and Enology, California State University, Fresno, CA, 93704, USA

Contact the author


Crimson Seedless, table grapes, anthocyanins, flavonoids, water status, electrical conductivity, normalized difference vegetation index (NDVI), spatial variability, viticulture


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.