terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Abstract

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region. ED was compared to a control non-defoliated (ND). Berry temperature was continuously monitored and normal heat hours (NHH) were calculated. Photosynthetic active radiation at cluster level (PARcluster) was monitored at five phenological stages (green berry (GB), pea size (PS), veraison (VER), mid-ripening (MR) and full maturation (FM). Various berry parameters were monitored: sugars, acidity, wax content, berry permeance, flavonoid compounds, abscisic acid (ABA) and related metabolites. As compared to ND, ED induced ~80% increase in PARcluster, and higher NHH. Consequently, accumulated temperatures above 35ºC were higher in ED than in ND. No differences in anthocyanin compounds were observed at FM, however, in ED the glucoside forms of anthocyanins reached their maximum concentration at MR. A high correlation was found between anthocyanins and NHH (r>0.83, p<0.01) as well as between flavonols and PARcluster (r=0.73, p<0.05). ABA was slightly higher in ND than in ED for the same NHH and after VER, ABA decreased faster in ED than in ND. ABA-GE increased exponentially from VER, reaching its maximum at MR in ND, while in ED it continued to accumulate through FM. Neither the wax content nor the cuticle permeance were affected by the ED treatment. Overall, ED induced changes in cluster-zone thermal and light microclimate which impacted berry ripening metabolism.

Acknowledgements: This research received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013), grant agreement nº 311775, Project Innovine.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Olfa Zarrouk1,2, Ricardo Egipto2,3, Carla Pinheiro4, Cecilia Brunetti5,6, Antonella Gori6, Massimiliano Tattini5, M. Manuela Chaves1, Carlos M. Lopes2

1 Plant Molecular Ecophysiology Laboratory. Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa, Oeiras, Portugal
2 LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
3 INIAV – Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
4 Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
5 IPSP – Institute for Sustainable Plant Protection, National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
6 DAGRI – Department of Agriculture, Environment, Food and Forestry, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy

Contact the author*

Keywords

ABA metabolism, anthocyanins, flavonols,
normal heat hours, Vitis vinifera, waxes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.