terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Abstract

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region. ED was compared to a control non-defoliated (ND). Berry temperature was continuously monitored and normal heat hours (NHH) were calculated. Photosynthetic active radiation at cluster level (PARcluster) was monitored at five phenological stages (green berry (GB), pea size (PS), veraison (VER), mid-ripening (MR) and full maturation (FM). Various berry parameters were monitored: sugars, acidity, wax content, berry permeance, flavonoid compounds, abscisic acid (ABA) and related metabolites. As compared to ND, ED induced ~80% increase in PARcluster, and higher NHH. Consequently, accumulated temperatures above 35ºC were higher in ED than in ND. No differences in anthocyanin compounds were observed at FM, however, in ED the glucoside forms of anthocyanins reached their maximum concentration at MR. A high correlation was found between anthocyanins and NHH (r>0.83, p<0.01) as well as between flavonols and PARcluster (r=0.73, p<0.05). ABA was slightly higher in ND than in ED for the same NHH and after VER, ABA decreased faster in ED than in ND. ABA-GE increased exponentially from VER, reaching its maximum at MR in ND, while in ED it continued to accumulate through FM. Neither the wax content nor the cuticle permeance were affected by the ED treatment. Overall, ED induced changes in cluster-zone thermal and light microclimate which impacted berry ripening metabolism.

Acknowledgements: This research received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013), grant agreement nº 311775, Project Innovine.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Olfa Zarrouk1,2, Ricardo Egipto2,3, Carla Pinheiro4, Cecilia Brunetti5,6, Antonella Gori6, Massimiliano Tattini5, M. Manuela Chaves1, Carlos M. Lopes2

1 Plant Molecular Ecophysiology Laboratory. Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa, Oeiras, Portugal
2 LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
3 INIAV – Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
4 Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
5 IPSP – Institute for Sustainable Plant Protection, National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
6 DAGRI – Department of Agriculture, Environment, Food and Forestry, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy

Contact the author*

Keywords

ABA metabolism, anthocyanins, flavonols,
normal heat hours, Vitis vinifera, waxes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).