terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Abstract

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region. ED was compared to a control non-defoliated (ND). Berry temperature was continuously monitored and normal heat hours (NHH) were calculated. Photosynthetic active radiation at cluster level (PARcluster) was monitored at five phenological stages (green berry (GB), pea size (PS), veraison (VER), mid-ripening (MR) and full maturation (FM). Various berry parameters were monitored: sugars, acidity, wax content, berry permeance, flavonoid compounds, abscisic acid (ABA) and related metabolites. As compared to ND, ED induced ~80% increase in PARcluster, and higher NHH. Consequently, accumulated temperatures above 35ºC were higher in ED than in ND. No differences in anthocyanin compounds were observed at FM, however, in ED the glucoside forms of anthocyanins reached their maximum concentration at MR. A high correlation was found between anthocyanins and NHH (r>0.83, p<0.01) as well as between flavonols and PARcluster (r=0.73, p<0.05). ABA was slightly higher in ND than in ED for the same NHH and after VER, ABA decreased faster in ED than in ND. ABA-GE increased exponentially from VER, reaching its maximum at MR in ND, while in ED it continued to accumulate through FM. Neither the wax content nor the cuticle permeance were affected by the ED treatment. Overall, ED induced changes in cluster-zone thermal and light microclimate which impacted berry ripening metabolism.

Acknowledgements: This research received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013), grant agreement nº 311775, Project Innovine.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Olfa Zarrouk1,2, Ricardo Egipto2,3, Carla Pinheiro4, Cecilia Brunetti5,6, Antonella Gori6, Massimiliano Tattini5, M. Manuela Chaves1, Carlos M. Lopes2

1 Plant Molecular Ecophysiology Laboratory. Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa, Oeiras, Portugal
2 LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
3 INIAV – Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
4 Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
5 IPSP – Institute for Sustainable Plant Protection, National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
6 DAGRI – Department of Agriculture, Environment, Food and Forestry, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy

Contact the author*

Keywords

ABA metabolism, anthocyanins, flavonols,
normal heat hours, Vitis vinifera, waxes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.