terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Abstract

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region. ED was compared to a control non-defoliated (ND). Berry temperature was continuously monitored and normal heat hours (NHH) were calculated. Photosynthetic active radiation at cluster level (PARcluster) was monitored at five phenological stages (green berry (GB), pea size (PS), veraison (VER), mid-ripening (MR) and full maturation (FM). Various berry parameters were monitored: sugars, acidity, wax content, berry permeance, flavonoid compounds, abscisic acid (ABA) and related metabolites. As compared to ND, ED induced ~80% increase in PARcluster, and higher NHH. Consequently, accumulated temperatures above 35ºC were higher in ED than in ND. No differences in anthocyanin compounds were observed at FM, however, in ED the glucoside forms of anthocyanins reached their maximum concentration at MR. A high correlation was found between anthocyanins and NHH (r>0.83, p<0.01) as well as between flavonols and PARcluster (r=0.73, p<0.05). ABA was slightly higher in ND than in ED for the same NHH and after VER, ABA decreased faster in ED than in ND. ABA-GE increased exponentially from VER, reaching its maximum at MR in ND, while in ED it continued to accumulate through FM. Neither the wax content nor the cuticle permeance were affected by the ED treatment. Overall, ED induced changes in cluster-zone thermal and light microclimate which impacted berry ripening metabolism.

Acknowledgements: This research received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013), grant agreement nº 311775, Project Innovine.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Olfa Zarrouk1,2, Ricardo Egipto2,3, Carla Pinheiro4, Cecilia Brunetti5,6, Antonella Gori6, Massimiliano Tattini5, M. Manuela Chaves1, Carlos M. Lopes2

1 Plant Molecular Ecophysiology Laboratory. Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa, Oeiras, Portugal
2 LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
3 INIAV – Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal
4 Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
5 IPSP – Institute for Sustainable Plant Protection, National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy
6 DAGRI – Department of Agriculture, Environment, Food and Forestry, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (Florence), Italy

Contact the author*

Keywords

ABA metabolism, anthocyanins, flavonols,
normal heat hours, Vitis vinifera, waxes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.