terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Abstract

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied. Forty-two grape samples from different vineyards of Pago de Carraovejas Winery, were harvested at the optimum ripening. Polyamines and amino acids of these musts were analyzed by reverse-phase high performance liquid chromatography with a diode-array detection system. Enological parameters were also determined according to official analysis methods. Multifactor analysis (MFA) was performed using the RStudio program, considering stress as qualitative variable.

MFA allowed differentiating the samples by stress and grape variety. Grapes from more stressed vineyards had the highest content of arginine, alanine, glutamine, methionine, lysine and serine. In contrast, Cabernet Sauvignon and Merlot grapes showed higher content of proline, glycine, putrescine and spermidine, and lower content of most amino acids (tryptophan, glutamic acid, aspartic acid, arginine, alanine, glutamine and methionine) than Tempranillo grapes.

These results indicate influence of grape variety and stress factor on polyamine and amino acid content of grape berries. Polyamine concentration seems to be more associated to grape variety than to stress. Further studies are needed to assess the evolution of these compounds during ripening and fermentation since amino acids are an important source of nitrogen for yeast growth and they are volatile compound precursors.

Acknowledgements: This study was supported by the project 2022/474 from “Rural Development Program (PDR) of Castilla y León 2014-2020” and financed with FEADER funds.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Silvia Pérez-Magariño1*, Inés Sampedro-Marigómez1, Estela Cano-Mozo1, Clara Albors2, Lorena López2, Eva Navascués2

1 Instituto Tecnológico Agrario de Castilla y León, Ctra. Burgos Km 119, 47071 Valladolid, Spain.
2 Pago de Carraovejas, Camino de Carraovejas, s/n. 47300 Peñafiel, Valladolid, Spain.

Contact the author*

Keywords

environmental stress, amino acids, polyamines, grape varieties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.