terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Abstract

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied. Forty-two grape samples from different vineyards of Pago de Carraovejas Winery, were harvested at the optimum ripening. Polyamines and amino acids of these musts were analyzed by reverse-phase high performance liquid chromatography with a diode-array detection system. Enological parameters were also determined according to official analysis methods. Multifactor analysis (MFA) was performed using the RStudio program, considering stress as qualitative variable.

MFA allowed differentiating the samples by stress and grape variety. Grapes from more stressed vineyards had the highest content of arginine, alanine, glutamine, methionine, lysine and serine. In contrast, Cabernet Sauvignon and Merlot grapes showed higher content of proline, glycine, putrescine and spermidine, and lower content of most amino acids (tryptophan, glutamic acid, aspartic acid, arginine, alanine, glutamine and methionine) than Tempranillo grapes.

These results indicate influence of grape variety and stress factor on polyamine and amino acid content of grape berries. Polyamine concentration seems to be more associated to grape variety than to stress. Further studies are needed to assess the evolution of these compounds during ripening and fermentation since amino acids are an important source of nitrogen for yeast growth and they are volatile compound precursors.

Acknowledgements: This study was supported by the project 2022/474 from “Rural Development Program (PDR) of Castilla y León 2014-2020” and financed with FEADER funds.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Silvia Pérez-Magariño1*, Inés Sampedro-Marigómez1, Estela Cano-Mozo1, Clara Albors2, Lorena López2, Eva Navascués2

1 Instituto Tecnológico Agrario de Castilla y León, Ctra. Burgos Km 119, 47071 Valladolid, Spain.
2 Pago de Carraovejas, Camino de Carraovejas, s/n. 47300 Peñafiel, Valladolid, Spain.

Contact the author*

Keywords

environmental stress, amino acids, polyamines, grape varieties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.