terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Abstract

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied. Forty-two grape samples from different vineyards of Pago de Carraovejas Winery, were harvested at the optimum ripening. Polyamines and amino acids of these musts were analyzed by reverse-phase high performance liquid chromatography with a diode-array detection system. Enological parameters were also determined according to official analysis methods. Multifactor analysis (MFA) was performed using the RStudio program, considering stress as qualitative variable.

MFA allowed differentiating the samples by stress and grape variety. Grapes from more stressed vineyards had the highest content of arginine, alanine, glutamine, methionine, lysine and serine. In contrast, Cabernet Sauvignon and Merlot grapes showed higher content of proline, glycine, putrescine and spermidine, and lower content of most amino acids (tryptophan, glutamic acid, aspartic acid, arginine, alanine, glutamine and methionine) than Tempranillo grapes.

These results indicate influence of grape variety and stress factor on polyamine and amino acid content of grape berries. Polyamine concentration seems to be more associated to grape variety than to stress. Further studies are needed to assess the evolution of these compounds during ripening and fermentation since amino acids are an important source of nitrogen for yeast growth and they are volatile compound precursors.

Acknowledgements: This study was supported by the project 2022/474 from “Rural Development Program (PDR) of Castilla y León 2014-2020” and financed with FEADER funds.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Silvia Pérez-Magariño1*, Inés Sampedro-Marigómez1, Estela Cano-Mozo1, Clara Albors2, Lorena López2, Eva Navascués2

1 Instituto Tecnológico Agrario de Castilla y León, Ctra. Burgos Km 119, 47071 Valladolid, Spain.
2 Pago de Carraovejas, Camino de Carraovejas, s/n. 47300 Peñafiel, Valladolid, Spain.

Contact the author*

Keywords

environmental stress, amino acids, polyamines, grape varieties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.