terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Abstract

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption. Markers of inflammation (IL-6) and cardiovascular risk (VCAM) were analyzed by Luminex technology. Our results showed a lower wine consumption in AD group (p=0.013), even when adjusted by confounding factors (p=0.040). A higher Mind Diet Score was also associated with prevention of AD (p=0.013 and p=0.003 after adjustments). In agreement with these results, higher concentrations of (poly)phenolic metabolites, some of them characteristic of wine consumption such as the anthocyanins malvidin-3-glucuronide and peonidin-diglucuronide, and some phenol metabolites formed as consequence of colonic fermentation were detected in 24-h urine controls. Interestingly, lower Il-6 and VCAM serum levels were observed in controls, even after proper adjustments (p=0.002-p=0.000 for IL-6; p=0.000-p=0.014 for VCAM).

Acknowledgements: This study was supported by Ministerio de Ciencia, Innovación y Universidades (Spanish Goverment) through the project PID2019-108851RB-C22 and the Margarita Salas postdoctoral grant (funded by the European Union – NextGenerationEU). The authors thank all participants of this study.

References:

  1. Scarmeas N. et al. (2018) Nutrition and prevention of cognitive impairment. Lancet Neurol., 17: 1006-1015, DOI: 10.1016/S1474-4422(18)30338-7

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Pérez-Matute P1, Yuste S2,3, Íñiguez M1, López-Álava S4, Matute Tobías B4, Marzo-Sola ME4, Motilva MJ2

1Infectious Diseases, Microbiota and Metabolism Unit, Center for Biomedical Research of La Rioja (CIBIR), CSIC Associated Unit. 26006 Logroño, Spain.
2Instituto de Ciencias de la Vid y el Vino-ICVV (CSIC, UR, GR) 26007 Logroño, Spain
3Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, 25198 Lleida, Spain
4Neurology Service. Hospital Universitario San Pedro, Logroño, Spain

Contact the author*

Keywords

Alzheimer’s disease, Mind Diet Score, wine, UPLC-QqQ-MS/MS, inflammation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].