GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Promitheus» the new greek red wine grape arromatic variety

«Promitheus» the new greek red wine grape arromatic variety

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012 by Researcher P. Zamanidis at the Athens Vine Department of the Institute of Olive, Subtropical Plants and Vine.

Material and methods – The variety created by crossing with the method of hybridization was used as the female parent the native newly Greek variety “Porfyro” with the male parent the variety “Cabernet-sauvignon”.  

Results – The “Promitheus” is a red aromatic wine variety. The duration of the variety from budburst to maturity is 146-155 days.  The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higherover 95%. The flowers are morphologically and physiologically hermaphrodite. The yield is very high (15-20 t of grapes /ha). The size of the cluster is medium with a length of 15 cm and a width of 14 cm, the shape is conical, loose density. The length of the peduncle of the grape is 3,5 cm and the length of the peduncle of the berry is 0.5 cm. The average weight of the grape is 180 gr. The size of the berry is small, oval in shape, , the length of 1,5mm and width 1,4mm with an average weight of 2,2g and a blue-black color. The numbers of seed are 3-4 per berry. The skin is  thick with highresistance. The flesh is hard and the juice has a particular flavor of the variety, green paper. The content of sugars is higher than 230 g / l. It has high resistance to drought and fungal diseases compared to most Vitis vinifera grapes wine varieties. The “Promitheus” variety, due to its morphological and physiological characteristics, is classified in the group of convarietas pontica Negr. And is intended for the production of dry red wines, but also for sparkling wines, aromatic juices and tsipouro or raki. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1, A. Karazoglou1 and Merkouropoulos1 G.

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture,.Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.

Contact the author

Keywords

hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Il vino nobile di Montepulciano

C’è grande attenzione al rapporto tra zonazione e marketing. Mi sembra però che ci sia anco­ra oggi un salto fra le pratiche di analisi del terreno e di deterrninazione di quello che potremo definire “cru” e quello che può essere la sua utilizzazione rispetto ai consumatori finali.

Vitamins in musts : an unexplored field

Vitamins are major compounds, involved in several prime yeast metabolic pathways. Yet, their significance in oenology has remained mostly unexplored for several decades and our current knowledge on the matter still remaining obscure to this day. While the vitaminic contents of grape musts have been approached in these ancient investigation

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;