GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Promitheus» the new greek red wine grape arromatic variety

«Promitheus» the new greek red wine grape arromatic variety

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012 by Researcher P. Zamanidis at the Athens Vine Department of the Institute of Olive, Subtropical Plants and Vine.

Material and methods – The variety created by crossing with the method of hybridization was used as the female parent the native newly Greek variety “Porfyro” with the male parent the variety “Cabernet-sauvignon”.  

Results – The “Promitheus” is a red aromatic wine variety. The duration of the variety from budburst to maturity is 146-155 days.  The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higherover 95%. The flowers are morphologically and physiologically hermaphrodite. The yield is very high (15-20 t of grapes /ha). The size of the cluster is medium with a length of 15 cm and a width of 14 cm, the shape is conical, loose density. The length of the peduncle of the grape is 3,5 cm and the length of the peduncle of the berry is 0.5 cm. The average weight of the grape is 180 gr. The size of the berry is small, oval in shape, , the length of 1,5mm and width 1,4mm with an average weight of 2,2g and a blue-black color. The numbers of seed are 3-4 per berry. The skin is  thick with highresistance. The flesh is hard and the juice has a particular flavor of the variety, green paper. The content of sugars is higher than 230 g / l. It has high resistance to drought and fungal diseases compared to most Vitis vinifera grapes wine varieties. The “Promitheus” variety, due to its morphological and physiological characteristics, is classified in the group of convarietas pontica Negr. And is intended for the production of dry red wines, but also for sparkling wines, aromatic juices and tsipouro or raki. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1, A. Karazoglou1 and Merkouropoulos1 G.

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture,.Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.

Contact the author

Keywords

hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Dalle zonazioni storiche alle “nuove forestazioni storiche produttive vitivinicole” per la valorizzazione delle cultivar e dei prodotti tipici ed originali dei Monti Iblei

Analisi sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” per impostare innovative zonazioni vitivinicole e dei prodotti tipici, originali attraverso la “Nuova forestazione storica produttiva”. Le recenti ricerche ed attività svolte sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” dei Monti Iblei (Ragusa) (I) hanno permesso di rilanciare le produzioni tipiche ed originali vitivinicole in un innovativo programma integrato tra zonazione (“Grande Zonazione”) e “Nuova forestazione storica produttiva” (“Grande Forestazione Produttiva”) di questo importante territorio.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.