GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Promitheus» the new greek red wine grape arromatic variety

«Promitheus» the new greek red wine grape arromatic variety

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012 by Researcher P. Zamanidis at the Athens Vine Department of the Institute of Olive, Subtropical Plants and Vine.

Material and methods – The variety created by crossing with the method of hybridization was used as the female parent the native newly Greek variety “Porfyro” with the male parent the variety “Cabernet-sauvignon”.  

Results – The “Promitheus” is a red aromatic wine variety. The duration of the variety from budburst to maturity is 146-155 days.  The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higherover 95%. The flowers are morphologically and physiologically hermaphrodite. The yield is very high (15-20 t of grapes /ha). The size of the cluster is medium with a length of 15 cm and a width of 14 cm, the shape is conical, loose density. The length of the peduncle of the grape is 3,5 cm and the length of the peduncle of the berry is 0.5 cm. The average weight of the grape is 180 gr. The size of the berry is small, oval in shape, , the length of 1,5mm and width 1,4mm with an average weight of 2,2g and a blue-black color. The numbers of seed are 3-4 per berry. The skin is  thick with highresistance. The flesh is hard and the juice has a particular flavor of the variety, green paper. The content of sugars is higher than 230 g / l. It has high resistance to drought and fungal diseases compared to most Vitis vinifera grapes wine varieties. The “Promitheus” variety, due to its morphological and physiological characteristics, is classified in the group of convarietas pontica Negr. And is intended for the production of dry red wines, but also for sparkling wines, aromatic juices and tsipouro or raki. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1, A. Karazoglou1 and Merkouropoulos1 G.

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture,.Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.

Contact the author

Keywords

hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Comparing vineyard irrigation management based in two different approaches: vegetation indices and SIMDualKc model

Water scarcity, high air temperatures, high vapor pressure deficit, and increasing frequency and intensity of extreme climatic events, namely heat waves, exert huge pressure on viticulture, as is the case of Mediterranean climates. Therefore, farmers rely more and more on irrigation to overcome these constraints. Deficit irrigation is a proved strategy to optimize irrigation efficiency and wine quality. The present study intends to demonstrate the application of precision techniques, namely remote sensing derived vegetation indices (VI) and an open source software, SIMDualKc, to compute crop evapotranspiration using the dual crop coefficient approach (Kcb + Ke), for deficit irrigation management.