GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Promitheus» the new greek red wine grape arromatic variety

«Promitheus» the new greek red wine grape arromatic variety

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012 by Researcher P. Zamanidis at the Athens Vine Department of the Institute of Olive, Subtropical Plants and Vine.

Material and methods – The variety created by crossing with the method of hybridization was used as the female parent the native newly Greek variety “Porfyro” with the male parent the variety “Cabernet-sauvignon”.  

Results – The “Promitheus” is a red aromatic wine variety. The duration of the variety from budburst to maturity is 146-155 days.  The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higherover 95%. The flowers are morphologically and physiologically hermaphrodite. The yield is very high (15-20 t of grapes /ha). The size of the cluster is medium with a length of 15 cm and a width of 14 cm, the shape is conical, loose density. The length of the peduncle of the grape is 3,5 cm and the length of the peduncle of the berry is 0.5 cm. The average weight of the grape is 180 gr. The size of the berry is small, oval in shape, , the length of 1,5mm and width 1,4mm with an average weight of 2,2g and a blue-black color. The numbers of seed are 3-4 per berry. The skin is  thick with highresistance. The flesh is hard and the juice has a particular flavor of the variety, green paper. The content of sugars is higher than 230 g / l. It has high resistance to drought and fungal diseases compared to most Vitis vinifera grapes wine varieties. The “Promitheus” variety, due to its morphological and physiological characteristics, is classified in the group of convarietas pontica Negr. And is intended for the production of dry red wines, but also for sparkling wines, aromatic juices and tsipouro or raki. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1, A. Karazoglou1 and Merkouropoulos1 G.

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture,.Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica.

Contact the author

Keywords

hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

OTR determination of aged closures: Impact on aroma compounds composition of Sauvignon blanc wines

Oxygen transfer rate (OTR) is a technical property of closure, and it modulates the oxygen supply to the wine during its bottle aging. It’s an important parameter to take into account in the analysis of wine aroma evolution. OTR distribution is well documented for new closures, but little research has been published on its determination for aged closures. Initial oxygen release after bottling impacts the composition of wines during the first years of storage), but the link between OTR, sensory perception and aroma composition after many years of aging has not yet been clearly studied.