Macrowine 2021
IVES 9 IVES Conference Series 9 Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

Abstract

AIM: the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines. The protocol was then applied to determine the evolution of VCCs in wines after accelerated ageing. VCCs are widely present in foods and beverages; their formation is due to chemical reactions and biological processes where oxygen plays a key role [1]. However, many of these are side transformations that highly affect the final aroma. The total package oxygen is usually negligible in bottled wines. However, that amount combined with temperature and light, can modify the oxidative status with a consequent loss in varietal aroma and an increase in off-flavors and defects [2]. At the same time, several carbonyls are related to pleasant scents so the winemaking of many oxidized wines like Madeira, Port, Vin Santo is tailored to emphasize their productions. We expect that a high-throughput method for the measure of the concentration of carbonyls could be added as a new quality control tool for the evaluation of a complete fermentation, correct winemaking style, and proper bottling and storage.

METHODS: Various white wines (cv. Gewürztraminer) and red wines (cv. Teroldego) were submitted to accelerated-ageing process. All bottles were opened under inert atmosphere inside a sealed hood and submitted to the accelerated-ageing procedure, according to Oliveira et. al. [3]. The extraction procedure was based on the protocol purposed by Moreira et. al. [4], upgraded with a fully automated sample preparation performed by a CTC-PAL3 autosampler. The sample was transferred from the 2 mL vial (kept at 5°C) to a 20 mL vial and then spiked with internal standard (IS) and derivatizing agent (PFBHA) solutions. After a 7 minutes derivatization at 45°C, the SPME extraction is performed at 40°C for 20 minutes. Finally, the fiber desorption takes place at 250°C for 4 min. GC-MS analysis was carried out using a TSQ Quantum XLS Ultra Triple Quadrupole GC-MS/MS using MRM acquisition. Calibration curves were acquired in matrix using a commercial white wine treated with activated carbon to remove odor active compounds. Acetone d6, 4-methyl-4-penten-2-one d10, Octanal d16 and 4-fluorobenzaldehyde were used as IS. As many as 56 VCCs were the analytes under investigation.

RESULTS: all compounds showed a good linearity spanning from approximately 0.1 to 50 µg/L (R2>0.99). Intra-day and 5 days repeatability showed an RSD

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maurizio Piergiovanni

University of Trento, Centre Agriculture, Food, Environment (C3A), San Michele all’Adige, Italy,Silvia, CARLIN, Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, San Michele all’Adige, Italy  Cesare, LOTTI, Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, San Michele all’Adige, Italy.  Fulvio, MATTIVI, University of Trento, Centre Agriculture, Food, Environment (C3A), San Michele all’Adige, Italy.

Contact the author

Keywords

carbonyls, oxidation, ageing, accelerated ageing, solid-phase micro extraction, automatization, oxygen, off-flavors

Citation

Related articles…

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)