terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sustainable management of grapevine trunk diseases

Sustainable management of grapevine trunk diseases

Abstract

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority. The objectives of this study were to develop sustainable control strategies in British Columbia (BC) based on i) the use of locally-sourced Trichoderma spp. as pruning wound protectants and ii) the implementation of ‘remedial surgery’ under BC climatic conditions. Three native Trichoderma spp. from BC were used to complete field trials during two growing seasons to determine their potential biocontrol activity against the GTD fungi Diplodia seriata and Neofusicoccum parvum. Results showed Trichoderma-based treatments developed in our laboratory to provide a high pruning wound protection for up to 60 days after treatment. Furthermore, these treatments performed better or similarly when compared against both chemical and biological products registered in other countries. ‘Remedial surgery’ trials were conducted in ‘Chardonnay’, ‘Pinot Gris’ and Pinot Noir’ for six years in BC. Results showed treated (renewed) vines to come back into production one year after treatment. Renewed vines showed higher yields than untreated controls after two years and yield was shown to be more than double at the end of the trial in renewed vines. These studies show sustainable management of GTD to be possible and further studies should focus on their full implementation in BC. 

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

José Ramón Úrbez-Torres

Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).