terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sustainable management of grapevine trunk diseases

Sustainable management of grapevine trunk diseases

Abstract

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority. The objectives of this study were to develop sustainable control strategies in British Columbia (BC) based on i) the use of locally-sourced Trichoderma spp. as pruning wound protectants and ii) the implementation of ‘remedial surgery’ under BC climatic conditions. Three native Trichoderma spp. from BC were used to complete field trials during two growing seasons to determine their potential biocontrol activity against the GTD fungi Diplodia seriata and Neofusicoccum parvum. Results showed Trichoderma-based treatments developed in our laboratory to provide a high pruning wound protection for up to 60 days after treatment. Furthermore, these treatments performed better or similarly when compared against both chemical and biological products registered in other countries. ‘Remedial surgery’ trials were conducted in ‘Chardonnay’, ‘Pinot Gris’ and Pinot Noir’ for six years in BC. Results showed treated (renewed) vines to come back into production one year after treatment. Renewed vines showed higher yields than untreated controls after two years and yield was shown to be more than double at the end of the trial in renewed vines. These studies show sustainable management of GTD to be possible and further studies should focus on their full implementation in BC. 

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

José Ramón Úrbez-Torres

Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada

Contact the author*

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.