terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

Abstract

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Under this scenario and in search of a low-cost alternative to mitigate the spring frost damage in the País variety, during the 2021-2022 season, late pruning was tested in phenological stages E4 and E9 (according E-L modified scale) compared to the winter pruning (PI). The results showed that, in relation to PI, the pruning carried out at E4 and E9 delayed bud break seven and 10 days respectively, and the differences in the phenological development remained until stage 32, when they were aligned. Pruning at E4 allowed better vegetative development than PI in terms of shoot length. Maturity was slower the later the pruning was, and at harvest time a difference of almost 2°Brix was registered between the late pruning and the PI. Regarding yield, differences in the number and weight of bunches showed that yields were similar in treatments E4 and PI, while E9 had a lower yield than PI.

Pruning at E9 is not be recommended since it generated a lower yield and presented problems in the bunch ripening uniformity, but pruning at E4 represents a great alternative to avoid spring frost damage and keep vineyard quality and yield.

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisol Reyes1*, Carolina Salazar2, M. Cecilia Peppi2

1Instituto de Investigaciones Agropecuarias (INIA) Raihuén, Esperanza s/n, Estación Villa Alegre. Chile.
2Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santa Rosa 11610, Santiago, Chile.

Contact the author*

Keywords

climate change, maturity, budbreak, drylands

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology. In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).