terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

Abstract

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Under this scenario and in search of a low-cost alternative to mitigate the spring frost damage in the País variety, during the 2021-2022 season, late pruning was tested in phenological stages E4 and E9 (according E-L modified scale) compared to the winter pruning (PI). The results showed that, in relation to PI, the pruning carried out at E4 and E9 delayed bud break seven and 10 days respectively, and the differences in the phenological development remained until stage 32, when they were aligned. Pruning at E4 allowed better vegetative development than PI in terms of shoot length. Maturity was slower the later the pruning was, and at harvest time a difference of almost 2°Brix was registered between the late pruning and the PI. Regarding yield, differences in the number and weight of bunches showed that yields were similar in treatments E4 and PI, while E9 had a lower yield than PI.

Pruning at E9 is not be recommended since it generated a lower yield and presented problems in the bunch ripening uniformity, but pruning at E4 represents a great alternative to avoid spring frost damage and keep vineyard quality and yield.

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisol Reyes1*, Carolina Salazar2, M. Cecilia Peppi2

1Instituto de Investigaciones Agropecuarias (INIA) Raihuén, Esperanza s/n, Estación Villa Alegre. Chile.
2Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santa Rosa 11610, Santiago, Chile.

Contact the author*

Keywords

climate change, maturity, budbreak, drylands

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation. We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.