terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Abstract

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate. These changes are influenced by factors such as the ageing process itself, cask characteristics (botanical origin, volume, toasting degree, previous usage), and pre-treatments like the sherry wine-seasoning process (Sherry Cask®)[2]. In this work, the physicochemical behaviours of wine spirits and wine distillates aged in Sherry Casks® and Brandy casks have been compared.

Methods: “Wine spirit” obtained at 77%ABV and “wine distillate” at 94.6%ABV were diluted with demineralized water to 68%ABV for ageing in American oak casks, medium toast, 500L of capacity and seasoned by 18%ABV Oloroso Sherry wine for 3 years (Sherry Cask®) and “Brandy casks” were only used for ageing brandy for 3 years. It was carried out in duplicate, following a static ageing for 2 years. Oenological parameters, chromatic characteristics, and total polyphenol index (TPI) were carried out according to OIV methodology. Volatile substances were determined by GC-FID.

Results: A substantial difference was observed between the distillates aged in Sherry Cask® and Brandy cask in the parameters influenced by ageing. Aged in Sherry Cask® showed greater increase in TPI and colour. These 2 types of distillates, despite their different initial characteristics, and therefore, their levels of volatile substances, show a similar evolution in the trends of these compounds.

Acknowledgements: The authors wish to thank the University of Cadiz (Spain) and Bodegas Fundador, S.L.U. (Spain) for the industrial predoctoral contract granted to the author Daniel Butrón Benítez.

References:

1) Regulation (EU) 2019/787 European Parliament and Council of 17 April 2019. L130/1-49 (Parlamento europeo y consejo de la unión europea., 2019).

2) Mosedale, J. R., & Puech, J.-L. (1998). Wood maturation of distilled beverages. Trends in Food Science & Technology, 9(3) (1998) 95–101. https://doi.org/10.1016/S0924-2244(98)00024-7

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Butrón-Benítez, Daniel1,2*; Valcárcel-Muñoz, Manuel J.2; García-Moreno, M. Valme1; Guillén-Sánchez, Dominico A.1

1 Departamento de Química Analítica, Facultad de Ciencias, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO) Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
Bodegas Fundador S.L.U., C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera (Cádiz), Spain.

Contact the author*

Keywords

Brandy, wine spirit, wine distillate, ageing, Sherry Cask®

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.