terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Abstract

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate. These changes are influenced by factors such as the ageing process itself, cask characteristics (botanical origin, volume, toasting degree, previous usage), and pre-treatments like the sherry wine-seasoning process (Sherry Cask®)[2]. In this work, the physicochemical behaviours of wine spirits and wine distillates aged in Sherry Casks® and Brandy casks have been compared.

Methods: “Wine spirit” obtained at 77%ABV and “wine distillate” at 94.6%ABV were diluted with demineralized water to 68%ABV for ageing in American oak casks, medium toast, 500L of capacity and seasoned by 18%ABV Oloroso Sherry wine for 3 years (Sherry Cask®) and “Brandy casks” were only used for ageing brandy for 3 years. It was carried out in duplicate, following a static ageing for 2 years. Oenological parameters, chromatic characteristics, and total polyphenol index (TPI) were carried out according to OIV methodology. Volatile substances were determined by GC-FID.

Results: A substantial difference was observed between the distillates aged in Sherry Cask® and Brandy cask in the parameters influenced by ageing. Aged in Sherry Cask® showed greater increase in TPI and colour. These 2 types of distillates, despite their different initial characteristics, and therefore, their levels of volatile substances, show a similar evolution in the trends of these compounds.

Acknowledgements: The authors wish to thank the University of Cadiz (Spain) and Bodegas Fundador, S.L.U. (Spain) for the industrial predoctoral contract granted to the author Daniel Butrón Benítez.

References:

1) Regulation (EU) 2019/787 European Parliament and Council of 17 April 2019. L130/1-49 (Parlamento europeo y consejo de la unión europea., 2019).

2) Mosedale, J. R., & Puech, J.-L. (1998). Wood maturation of distilled beverages. Trends in Food Science & Technology, 9(3) (1998) 95–101. https://doi.org/10.1016/S0924-2244(98)00024-7

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Butrón-Benítez, Daniel1,2*; Valcárcel-Muñoz, Manuel J.2; García-Moreno, M. Valme1; Guillén-Sánchez, Dominico A.1

1 Departamento de Química Analítica, Facultad de Ciencias, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO) Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
Bodegas Fundador S.L.U., C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera (Cádiz), Spain.

Contact the author*

Keywords

Brandy, wine spirit, wine distillate, ageing, Sherry Cask®

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.