GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Callinikos: the new white table grapeseedless variety for biological produce

Callinikos: the new white table grapeseedless variety for biological produce

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department of the Institute of Olive and Subtropical Plants, with the hybridization method in 2012. 

Material and methods – The variety created by crossing by resistant newly Greek table variety “Georgakis” with the variety “Soultanina” The resulting cultivar is a complex interspecific is a cross-breeding between American, European and Far East (V. Amurensis). 

Results – «Callinicos» is a complex seedless table grape cultivar. The duration of the “Callinicos” variety from budburst to maturity is 146-155 days. The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higher over 95%. The shoots growth is strong. The bearing grapevine percentage is 90%. The average cluster weight is very big 900g. The yield is high more than 35-45 t / ha. A blossom bud has green color with yellowy-brown tones. The mature leaf is medium size, symmetrical, and five hard lobs it is divided weakly In same lobs has sort teeths. The flowers are hermaphrodite. One arm usually has two inflorescences,on4th and 6thknots.The flower is hermaphrodite. The cluster is big sized, cone-shaped, of medium-density. The berry is medium, sort elliptical, green-yellow colored. The berry weight is 5 g. The berry skin is thin and high resistance. The pulp is very firm, with varietal flavor. The content of sugar is high. The grapes can be consumed fresh and be used for raisin production. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture, Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

Hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.