GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Callinikos: the new white table grapeseedless variety for biological produce

Callinikos: the new white table grapeseedless variety for biological produce

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department of the Institute of Olive and Subtropical Plants, with the hybridization method in 2012. 

Material and methods – The variety created by crossing by resistant newly Greek table variety “Georgakis” with the variety “Soultanina” The resulting cultivar is a complex interspecific is a cross-breeding between American, European and Far East (V. Amurensis). 

Results – «Callinicos» is a complex seedless table grape cultivar. The duration of the “Callinicos” variety from budburst to maturity is 146-155 days. The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higher over 95%. The shoots growth is strong. The bearing grapevine percentage is 90%. The average cluster weight is very big 900g. The yield is high more than 35-45 t / ha. A blossom bud has green color with yellowy-brown tones. The mature leaf is medium size, symmetrical, and five hard lobs it is divided weakly In same lobs has sort teeths. The flowers are hermaphrodite. One arm usually has two inflorescences,on4th and 6thknots.The flower is hermaphrodite. The cluster is big sized, cone-shaped, of medium-density. The berry is medium, sort elliptical, green-yellow colored. The berry weight is 5 g. The berry skin is thin and high resistance. The pulp is very firm, with varietal flavor. The content of sugar is high. The grapes can be consumed fresh and be used for raisin production. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture, Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

Hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Characterized one of the largest collections of grapevine rootstocks (non-vinifera)

Microsatellite markers are a valuable tool to facilitate the management of germplasm collections and assess genetic diversity. This study reports the genetic characterization of a large collection of 379 rootstocks and other non-viniferaaccessions maintained at the University of Milan, Italy.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Effectiveness of “curettage” and rootstock over-grafting in the control of esca

Context and purpose of the study. The grapevine domestication requested the need of pruning, which expose the vines to trunk pathogens, leading to the spread of vine trunk diseases.