GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Callinikos: the new white table grapeseedless variety for biological produce

Callinikos: the new white table grapeseedless variety for biological produce

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department of the Institute of Olive and Subtropical Plants, with the hybridization method in 2012. 

Material and methods – The variety created by crossing by resistant newly Greek table variety “Georgakis” with the variety “Soultanina” The resulting cultivar is a complex interspecific is a cross-breeding between American, European and Far East (V. Amurensis). 

Results – «Callinicos» is a complex seedless table grape cultivar. The duration of the “Callinicos” variety from budburst to maturity is 146-155 days. The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higher over 95%. The shoots growth is strong. The bearing grapevine percentage is 90%. The average cluster weight is very big 900g. The yield is high more than 35-45 t / ha. A blossom bud has green color with yellowy-brown tones. The mature leaf is medium size, symmetrical, and five hard lobs it is divided weakly In same lobs has sort teeths. The flowers are hermaphrodite. One arm usually has two inflorescences,on4th and 6thknots.The flower is hermaphrodite. The cluster is big sized, cone-shaped, of medium-density. The berry is medium, sort elliptical, green-yellow colored. The berry weight is 5 g. The berry skin is thin and high resistance. The pulp is very firm, with varietal flavor. The content of sugar is high. The grapes can be consumed fresh and be used for raisin production. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera.

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture, Hellenic. Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

Hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Genomics and phenomics of root system architecture in grapevine

Adapting viticulture to climate change is crucial, as it presents significant challenges for future grape production.

Climatic influences on Mencía grapevine phenology and grape composition for Amandi (Ribeira Sacra, Spain)

During the year 2009 we have studied the phenology and grape composition of Mencía cultivar in seven different situations (orientation and altitude) for Amandi subzone

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.