GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 The state of the climate

The state of the climate

Abstract

Context and purpose of the study – The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems. One of these systems, agriculture, is strongly influenced by climate, which largely determines what type, where, and how crops can be grown. Within agriculture, growing grapes and wine production are a sensitive long‐lived specialty crop system where the environmental and economic sustainability of quality production is at risk from a changing climate. As such, this work examines the current state of the climate globally and within wine regions to provide a framework for these changes historically and into the future.

Material and methods – Summaries of global observations and climate model projections are utilized to provide a current state of the climate. Spatial climate data for 22 prominent wine regions worldwide are also used to assess characteristics and trends in annual and growing season temperature and precipitation.

Results – Growing season temperatures across the 22 regions for 1901‐2017 averaged 16.6°C, ranging from 13‐ 15°C in the cooler regions to 19‐21°C in the warmest regions. Over all 22 regions, the average decadal temperature trend during the growing season is 0.12°C while the average change over the entire time‐ period is 1.4°C. While some regions show higher interannual variability and more gradual warming trends, many regions show stronger trends and more rapid warming. Annual temperature changes closely mirror those during the growing season (not shown). For precipitation, the results detail a wide range in year‐to‐year variability in precipitation, with some regions experiencing consistent annual and growing season precipitation amounts while others are much more prone to extreme dry periods. The average percentage of growing season to annual precipitation across these regions is 45%, with those regions lower than average being predominately west coast regions and those with higher percentages being largely in continental climates with greater summertime thunderstorm activity or where greater oceanic influences exist. Precipitation trends for the 22 wine regions are few, following observations globally and in many other wine regions during the last 50 years

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Gregory V. JONES

Center for Wine Education, Linfield College, 900 SE Baker St, McMinnville, Oregon, USA

Contact the author

Keywords

viticulture, wine, terroir, climate, climate change

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

The effects of antioxidants and gas sparging on New Zealand white wines

This study aims to investigate the effects of different conditions of grape processing or fermentation on the aroma profile of New Zealand white wines.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.