GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 The state of the climate

The state of the climate

Abstract

Context and purpose of the study – The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems. One of these systems, agriculture, is strongly influenced by climate, which largely determines what type, where, and how crops can be grown. Within agriculture, growing grapes and wine production are a sensitive long‐lived specialty crop system where the environmental and economic sustainability of quality production is at risk from a changing climate. As such, this work examines the current state of the climate globally and within wine regions to provide a framework for these changes historically and into the future.

Material and methods – Summaries of global observations and climate model projections are utilized to provide a current state of the climate. Spatial climate data for 22 prominent wine regions worldwide are also used to assess characteristics and trends in annual and growing season temperature and precipitation.

Results – Growing season temperatures across the 22 regions for 1901‐2017 averaged 16.6°C, ranging from 13‐ 15°C in the cooler regions to 19‐21°C in the warmest regions. Over all 22 regions, the average decadal temperature trend during the growing season is 0.12°C while the average change over the entire time‐ period is 1.4°C. While some regions show higher interannual variability and more gradual warming trends, many regions show stronger trends and more rapid warming. Annual temperature changes closely mirror those during the growing season (not shown). For precipitation, the results detail a wide range in year‐to‐year variability in precipitation, with some regions experiencing consistent annual and growing season precipitation amounts while others are much more prone to extreme dry periods. The average percentage of growing season to annual precipitation across these regions is 45%, with those regions lower than average being predominately west coast regions and those with higher percentages being largely in continental climates with greater summertime thunderstorm activity or where greater oceanic influences exist. Precipitation trends for the 22 wine regions are few, following observations globally and in many other wine regions during the last 50 years

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Gregory V. JONES

Center for Wine Education, Linfield College, 900 SE Baker St, McMinnville, Oregon, USA

Contact the author

Keywords

viticulture, wine, terroir, climate, climate change

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Vitis vinifera L. is one of the most important cultures for the soil and
climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

Study of the volatile aroma profile of five Italian grape varieties submitted to controlled postharvest withering

Wines made with grapes submitted to postharvest dehydration are often referred to as “passito” or “straw wines.” This distinct style of winemaking consists of a process of water loss that allows the berries to undergo a mild water stress and senescence process [1].

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009).

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.