terclim by ICS banner
IVES 9 IVES Conference Series 9 A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Abstract

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

In this synthesis approach, the output of different CO2 enrichment experiments such as greenhouse and growth chamber trials will be compared to open top chamber (OTC) and Free Air Carbon dioxide Enrichment (FACE) studies. Furthermore, the regional climate in which single field studies have been conducted plays a major role in terms of up and down regulation of CO2 induced processes, whereas in open or closed chamber systems a stable but artificial microclimate exists within the chamber.

Due to higher photosynthesis rates under eCO2 mature field grown vines showed higher transport capacity and larger sinks for additional carbohydrates produced under eCO2, thus grapevines increased in vegetative and reproductive growth. During fruit ripening single berry weight, bunch architecture and bunch compactness altered similarly for vines under eCO2 within the field and to a lower extent when it comes to short-term chamber and greenhouse trials. Regarding crop yield, no or little differences occurred for all varieties for the first year of investigation. Usually, higher yield emerged under eCO2 in the following season as explained by the grapevine’s reproductive cycle. Analyses of berries and must resulted mostly in alterations of malic and tartaric acid concentrations under eCO2 and was close linked to berry size. Sugar accumulation in berries depended on climatic factors and differed if vines were grown under warm or cool climate conditions in combination with CO2 enrichment. Elevated CO2 was also des- cribed to modify some berry colour parameters like anthocyanins, but in the end both syntheses were induced – stimulation and inhabitation of anthocyanin accumulation.

Overall, eCO2 resulted in a change of vegetative, generative and qualitative parameters of grapevines compared to an atmospheric CO2 concentration without affecting wine quality in general. Nevertheless, as carbon dioxide is one of many influencing climate factors on fruit and berry development it needs to be discussed within the context of future wine quality.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Yvette Wohlfahrt

Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, carbon dioxide (CO2), grapevine physiology, berry development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.