terclim by ICS banner
IVES 9 IVES Conference Series 9 A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Abstract

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

In this synthesis approach, the output of different CO2 enrichment experiments such as greenhouse and growth chamber trials will be compared to open top chamber (OTC) and Free Air Carbon dioxide Enrichment (FACE) studies. Furthermore, the regional climate in which single field studies have been conducted plays a major role in terms of up and down regulation of CO2 induced processes, whereas in open or closed chamber systems a stable but artificial microclimate exists within the chamber.

Due to higher photosynthesis rates under eCO2 mature field grown vines showed higher transport capacity and larger sinks for additional carbohydrates produced under eCO2, thus grapevines increased in vegetative and reproductive growth. During fruit ripening single berry weight, bunch architecture and bunch compactness altered similarly for vines under eCO2 within the field and to a lower extent when it comes to short-term chamber and greenhouse trials. Regarding crop yield, no or little differences occurred for all varieties for the first year of investigation. Usually, higher yield emerged under eCO2 in the following season as explained by the grapevine’s reproductive cycle. Analyses of berries and must resulted mostly in alterations of malic and tartaric acid concentrations under eCO2 and was close linked to berry size. Sugar accumulation in berries depended on climatic factors and differed if vines were grown under warm or cool climate conditions in combination with CO2 enrichment. Elevated CO2 was also des- cribed to modify some berry colour parameters like anthocyanins, but in the end both syntheses were induced – stimulation and inhabitation of anthocyanin accumulation.

Overall, eCO2 resulted in a change of vegetative, generative and qualitative parameters of grapevines compared to an atmospheric CO2 concentration without affecting wine quality in general. Nevertheless, as carbon dioxide is one of many influencing climate factors on fruit and berry development it needs to be discussed within the context of future wine quality.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Yvette Wohlfahrt

Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, carbon dioxide (CO2), grapevine physiology, berry development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.