terclim by ICS banner
IVES 9 IVES Conference Series 9 A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Abstract

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

In this synthesis approach, the output of different CO2 enrichment experiments such as greenhouse and growth chamber trials will be compared to open top chamber (OTC) and Free Air Carbon dioxide Enrichment (FACE) studies. Furthermore, the regional climate in which single field studies have been conducted plays a major role in terms of up and down regulation of CO2 induced processes, whereas in open or closed chamber systems a stable but artificial microclimate exists within the chamber.

Due to higher photosynthesis rates under eCO2 mature field grown vines showed higher transport capacity and larger sinks for additional carbohydrates produced under eCO2, thus grapevines increased in vegetative and reproductive growth. During fruit ripening single berry weight, bunch architecture and bunch compactness altered similarly for vines under eCO2 within the field and to a lower extent when it comes to short-term chamber and greenhouse trials. Regarding crop yield, no or little differences occurred for all varieties for the first year of investigation. Usually, higher yield emerged under eCO2 in the following season as explained by the grapevine’s reproductive cycle. Analyses of berries and must resulted mostly in alterations of malic and tartaric acid concentrations under eCO2 and was close linked to berry size. Sugar accumulation in berries depended on climatic factors and differed if vines were grown under warm or cool climate conditions in combination with CO2 enrichment. Elevated CO2 was also des- cribed to modify some berry colour parameters like anthocyanins, but in the end both syntheses were induced – stimulation and inhabitation of anthocyanin accumulation.

Overall, eCO2 resulted in a change of vegetative, generative and qualitative parameters of grapevines compared to an atmospheric CO2 concentration without affecting wine quality in general. Nevertheless, as carbon dioxide is one of many influencing climate factors on fruit and berry development it needs to be discussed within the context of future wine quality.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Yvette Wohlfahrt

Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, carbon dioxide (CO2), grapevine physiology, berry development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.