terclim by ICS banner
IVES 9 IVES Conference Series 9 A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Abstract

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

In this synthesis approach, the output of different CO2 enrichment experiments such as greenhouse and growth chamber trials will be compared to open top chamber (OTC) and Free Air Carbon dioxide Enrichment (FACE) studies. Furthermore, the regional climate in which single field studies have been conducted plays a major role in terms of up and down regulation of CO2 induced processes, whereas in open or closed chamber systems a stable but artificial microclimate exists within the chamber.

Due to higher photosynthesis rates under eCO2 mature field grown vines showed higher transport capacity and larger sinks for additional carbohydrates produced under eCO2, thus grapevines increased in vegetative and reproductive growth. During fruit ripening single berry weight, bunch architecture and bunch compactness altered similarly for vines under eCO2 within the field and to a lower extent when it comes to short-term chamber and greenhouse trials. Regarding crop yield, no or little differences occurred for all varieties for the first year of investigation. Usually, higher yield emerged under eCO2 in the following season as explained by the grapevine’s reproductive cycle. Analyses of berries and must resulted mostly in alterations of malic and tartaric acid concentrations under eCO2 and was close linked to berry size. Sugar accumulation in berries depended on climatic factors and differed if vines were grown under warm or cool climate conditions in combination with CO2 enrichment. Elevated CO2 was also des- cribed to modify some berry colour parameters like anthocyanins, but in the end both syntheses were induced – stimulation and inhabitation of anthocyanin accumulation.

Overall, eCO2 resulted in a change of vegetative, generative and qualitative parameters of grapevines compared to an atmospheric CO2 concentration without affecting wine quality in general. Nevertheless, as carbon dioxide is one of many influencing climate factors on fruit and berry development it needs to be discussed within the context of future wine quality.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Yvette Wohlfahrt

Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany

Contact the author*

Keywords

climate change, carbon dioxide (CO2), grapevine physiology, berry development

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.