GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Simulating the impact of climate change on grapevine behaviour and viticultural activities

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Abstract

Context and purpose of the study‐ Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007 and 2015; Van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short‐term impacts on wine quality and style, to long‐term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010 ; Quénol 2014). Within the context of a global changing climate, most studies that address future impacts and potential adaptation strategies are largely based on modelling technologies. However, very few studies model the complex interaction between environmental features, plant behaviour and farming activities at local scales. In viticulture, this level of assessment is of particular importance, as it is the scale where adaptation matters the most. Within this context, it seems appropriate to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and the dynamics of viticultural activities.

Material and methods ‐ Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), has been designed to describe viticultural practices with responsive agents constrained by exogenous variables (biophysical, socio‐economic and regulatory constraints). Based on multi‐agent paradigm, SEVE has two principle objectives, first, to simulate grapevine phenology and grape ripening according to climate variability and secondly, to simulate viticultural practices and adaptation strategies under environmental, economic and socio‐technical constraints. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. The reaction chain results from a combination of natural and anthropogenic stresses integrated at different scale level (from plot to vineyard).

Results ‐ Simulation results underline that small scale variability is strongly linked with vine phenology stages and ripeness potential. Over the next century, winegrowers will likely be confronted by increasing temperatures and changing rainfall patterns that will have important impacts on agronomic itineraries and adaptation strategies. Through different experiment in european vineyards in the context of ADVICLIM project (http://www.adviclim.eu/), SEVE model provide prospective simulation of potential adaptation strategies from short‐term (e.g. in harvest management practices) to long‐term adjustment, such as in varietal selection. In response to increasing temperatures and changing rainfall patterns, they vary therefore in nature and effectiveness, where longterm measures in the choice in grapevine variety and the use of irrigation seem to be the most effective. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cyril TISSOT1, Mathias ROUAN1, Renan LE ROUX2, Etienne NEETHLING3, Laure de RERREGUIER4, Théo PETITJEAN4, Cornelis van LEEUWEN4, Hervé QUENOL2, Irima LIVIU5, Cristi PATRICHE5

(1) UMR 6554 CNRS LETG, Brest, France
(2) UMR 6554 CNRS LETG, Rennes, France
(3) LEESA, Angers, France
(4) ISVV, Villenave-d’Ornon, France
(5) University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

grapevine, production strategies, climate change, multi‐agents model, adaptation, temporal dynamics, spatial variability, wine growers

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterisation of Sicilian Nero d’Avola grape and wine: A preliminary study

The chemical composition and the sensory characteristics of wine result from dynamic interactions between several factors including grape variety, soil, viticultural techniques, climate conditions, yeasts metabolism, oenological approaches. Recently, Grigg et al.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Model ageing effects on the formation and evolution of minty terpenoids in red wine

A pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in the ageing bouquet of red Bordeaux wines

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

Factors involved in the acumulation of acetic acid inside the grapes during winemaking by carbonic maceration

Vinification by carbonic maceration (CM) is based in the anaerobic fermentative metabolism also called intracellular fermentation (IF).