GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Simulating the impact of climate change on grapevine behaviour and viticultural activities

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Abstract

Context and purpose of the study‐ Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007 and 2015; Van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short‐term impacts on wine quality and style, to long‐term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010 ; Quénol 2014). Within the context of a global changing climate, most studies that address future impacts and potential adaptation strategies are largely based on modelling technologies. However, very few studies model the complex interaction between environmental features, plant behaviour and farming activities at local scales. In viticulture, this level of assessment is of particular importance, as it is the scale where adaptation matters the most. Within this context, it seems appropriate to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and the dynamics of viticultural activities.

Material and methods ‐ Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), has been designed to describe viticultural practices with responsive agents constrained by exogenous variables (biophysical, socio‐economic and regulatory constraints). Based on multi‐agent paradigm, SEVE has two principle objectives, first, to simulate grapevine phenology and grape ripening according to climate variability and secondly, to simulate viticultural practices and adaptation strategies under environmental, economic and socio‐technical constraints. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. The reaction chain results from a combination of natural and anthropogenic stresses integrated at different scale level (from plot to vineyard).

Results ‐ Simulation results underline that small scale variability is strongly linked with vine phenology stages and ripeness potential. Over the next century, winegrowers will likely be confronted by increasing temperatures and changing rainfall patterns that will have important impacts on agronomic itineraries and adaptation strategies. Through different experiment in european vineyards in the context of ADVICLIM project (http://www.adviclim.eu/), SEVE model provide prospective simulation of potential adaptation strategies from short‐term (e.g. in harvest management practices) to long‐term adjustment, such as in varietal selection. In response to increasing temperatures and changing rainfall patterns, they vary therefore in nature and effectiveness, where longterm measures in the choice in grapevine variety and the use of irrigation seem to be the most effective. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cyril TISSOT1, Mathias ROUAN1, Renan LE ROUX2, Etienne NEETHLING3, Laure de RERREGUIER4, Théo PETITJEAN4, Cornelis van LEEUWEN4, Hervé QUENOL2, Irima LIVIU5, Cristi PATRICHE5

(1) UMR 6554 CNRS LETG, Brest, France
(2) UMR 6554 CNRS LETG, Rennes, France
(3) LEESA, Angers, France
(4) ISVV, Villenave-d’Ornon, France
(5) University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

grapevine, production strategies, climate change, multi‐agents model, adaptation, temporal dynamics, spatial variability, wine growers

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Grapevine responses to Botrytis cinerea infection: noble rot versus grey rot

The intricate relationship between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can lead to the development of either the desirable noble rot (NR) or the unfavourable grey rot (GR), depending on the prevailing weather conditions.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

Legal and economic evolution of the Japanese wine industry in the 21st century

Historically bounded by strict regulations with a focus on taxation since the 19th century, the japanese wine industry stands at a crossroads in the 21st century, necessitated by alignment with international standards and opening towards global markets.

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.