GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Simulating the impact of climate change on grapevine behaviour and viticultural activities

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Abstract

Context and purpose of the study‐ Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007 and 2015; Van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short‐term impacts on wine quality and style, to long‐term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010 ; Quénol 2014). Within the context of a global changing climate, most studies that address future impacts and potential adaptation strategies are largely based on modelling technologies. However, very few studies model the complex interaction between environmental features, plant behaviour and farming activities at local scales. In viticulture, this level of assessment is of particular importance, as it is the scale where adaptation matters the most. Within this context, it seems appropriate to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and the dynamics of viticultural activities.

Material and methods ‐ Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), has been designed to describe viticultural practices with responsive agents constrained by exogenous variables (biophysical, socio‐economic and regulatory constraints). Based on multi‐agent paradigm, SEVE has two principle objectives, first, to simulate grapevine phenology and grape ripening according to climate variability and secondly, to simulate viticultural practices and adaptation strategies under environmental, economic and socio‐technical constraints. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. The reaction chain results from a combination of natural and anthropogenic stresses integrated at different scale level (from plot to vineyard).

Results ‐ Simulation results underline that small scale variability is strongly linked with vine phenology stages and ripeness potential. Over the next century, winegrowers will likely be confronted by increasing temperatures and changing rainfall patterns that will have important impacts on agronomic itineraries and adaptation strategies. Through different experiment in european vineyards in the context of ADVICLIM project (http://www.adviclim.eu/), SEVE model provide prospective simulation of potential adaptation strategies from short‐term (e.g. in harvest management practices) to long‐term adjustment, such as in varietal selection. In response to increasing temperatures and changing rainfall patterns, they vary therefore in nature and effectiveness, where longterm measures in the choice in grapevine variety and the use of irrigation seem to be the most effective. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cyril TISSOT1, Mathias ROUAN1, Renan LE ROUX2, Etienne NEETHLING3, Laure de RERREGUIER4, Théo PETITJEAN4, Cornelis van LEEUWEN4, Hervé QUENOL2, Irima LIVIU5, Cristi PATRICHE5

(1) UMR 6554 CNRS LETG, Brest, France
(2) UMR 6554 CNRS LETG, Rennes, France
(3) LEESA, Angers, France
(4) ISVV, Villenave-d’Ornon, France
(5) University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

grapevine, production strategies, climate change, multi‐agents model, adaptation, temporal dynamics, spatial variability, wine growers

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

Physical-mechanical berry skin traits as additional indicators of resistance to botrytis bunch rot and grape sunburn

Climate change increasingly leads to altered growing conditions in viticulture, such as heat stress, drought or high infection pressure favoring pathogen infection.

Meso-scale geostatistical analysis: a method for improving experimental design

The growing region of Barolo DOCG certified wines is topographically complex. The region is famous for this complexity and for the associated terroir driven Nebbiolo grapes and wines derived distinctly from this varietal. Although it is recognized that the Barolo area is unusual topographically and it is assumed that this unusual topography lends to the inherit terroir, the specifics of this relationship are less well defined.

Il piano regolatore delle città’ del vino: aspetti urbanistici, economici e turistici

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...