GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Simulating the impact of climate change on grapevine behaviour and viticultural activities

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Abstract

Context and purpose of the study‐ Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007 and 2015; Van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010). They vary from short‐term impacts on wine quality and style, to long‐term issues such as varietal suitability and the economic sustainability of traditional wine growing regions (Schultz and Jones 2010 ; Quénol 2014). Within the context of a global changing climate, most studies that address future impacts and potential adaptation strategies are largely based on modelling technologies. However, very few studies model the complex interaction between environmental features, plant behaviour and farming activities at local scales. In viticulture, this level of assessment is of particular importance, as it is the scale where adaptation matters the most. Within this context, it seems appropriate to develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and the dynamics of viticultural activities.

Material and methods ‐ Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), has been designed to describe viticultural practices with responsive agents constrained by exogenous variables (biophysical, socio‐economic and regulatory constraints). Based on multi‐agent paradigm, SEVE has two principle objectives, first, to simulate grapevine phenology and grape ripening according to climate variability and secondly, to simulate viticultural practices and adaptation strategies under environmental, economic and socio‐technical constraints. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. The reaction chain results from a combination of natural and anthropogenic stresses integrated at different scale level (from plot to vineyard).

Results ‐ Simulation results underline that small scale variability is strongly linked with vine phenology stages and ripeness potential. Over the next century, winegrowers will likely be confronted by increasing temperatures and changing rainfall patterns that will have important impacts on agronomic itineraries and adaptation strategies. Through different experiment in european vineyards in the context of ADVICLIM project (http://www.adviclim.eu/), SEVE model provide prospective simulation of potential adaptation strategies from short‐term (e.g. in harvest management practices) to long‐term adjustment, such as in varietal selection. In response to increasing temperatures and changing rainfall patterns, they vary therefore in nature and effectiveness, where longterm measures in the choice in grapevine variety and the use of irrigation seem to be the most effective. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Cyril TISSOT1, Mathias ROUAN1, Renan LE ROUX2, Etienne NEETHLING3, Laure de RERREGUIER4, Théo PETITJEAN4, Cornelis van LEEUWEN4, Hervé QUENOL2, Irima LIVIU5, Cristi PATRICHE5

(1) UMR 6554 CNRS LETG, Brest, France
(2) UMR 6554 CNRS LETG, Rennes, France
(3) LEESA, Angers, France
(4) ISVV, Villenave-d’Ornon, France
(5) University of Agricultural Sciences, Iasi, Romania

Contact the author

Keywords

grapevine, production strategies, climate change, multi‐agents model, adaptation, temporal dynamics, spatial variability, wine growers

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.

Impact of high temperatures on phenolic profile of Babić grapes

Babić is a Croatian native grapevine variety grown in the Coastal region, mainly in the Šibenik and Primošten areas, famous for high quality red wines. The region is known for its warm Mediterranean climate and karst relief. Vineyards are found on the hillsides of varying slopes and exposition usually giving low yields of exceptional quality.