terclim by ICS banner
IVES 9 IVES Conference Series 9 Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Abstract

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species diversity of many of the relevant ecological niches within the broader wine environment, from vineyard soils to plants and grapes to fermentation. The data highlight that species identities and diversity significantly impact agronomic performance of vineyards as well as wine quality, but the complexity of these systems and of microbial growth dynamics has defeated attempts to offer actionable tools to guide or predict specific outcomes of ecosystem-based interventions. The application of such tools in future will depend on our understanding of the physiological and molecular drivers that govern microbial ecosystems. Here we describe several integrated approaches to characterize the molecular interactions between species within the fermentation and the waste-water ecosystem and to model the development of these ecosystems. Binary (two species) and consortia-based approaches indicate ecosystem-specific developmental patterns in these systems. On a molecular level, data strongly support that cell-wall related properties of yeast species impact the development of fermentation ecosystems during wine making and highlight the importance of physical contacts between species in these ecological processes. To model the wine yeast fermentation ecosystem, high-throughput flow cytometry-based approaches were developed, and specific models based on a machine-learning approach were developed. In winery wastewater, laboratory-based evolution of two species exposed to biotic selection pressure in a synthetic environment, Saccharomyces cerevisiae and the microalga Chlorella sorokiniana, identified two specific genes involved in carbon and nitrogen catabolite repression that facilitate mutualistic behaviors between yeast and microalgae when inactive. Taken together the data suggest novel strategies for microbial ecosystem-based decision making in wine making and improved integration of natural microbial biodiversity in the process.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian F. Bauer, Cleo Conacher, Jennifer Oosthuizen, Georgia Strydom, Evodia Setati, Rene Naidoo-Blassoples

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.