terclim by ICS banner
IVES 9 IVES Conference Series 9 Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Abstract

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species diversity of many of the relevant ecological niches within the broader wine environment, from vineyard soils to plants and grapes to fermentation. The data highlight that species identities and diversity significantly impact agronomic performance of vineyards as well as wine quality, but the complexity of these systems and of microbial growth dynamics has defeated attempts to offer actionable tools to guide or predict specific outcomes of ecosystem-based interventions. The application of such tools in future will depend on our understanding of the physiological and molecular drivers that govern microbial ecosystems. Here we describe several integrated approaches to characterize the molecular interactions between species within the fermentation and the waste-water ecosystem and to model the development of these ecosystems. Binary (two species) and consortia-based approaches indicate ecosystem-specific developmental patterns in these systems. On a molecular level, data strongly support that cell-wall related properties of yeast species impact the development of fermentation ecosystems during wine making and highlight the importance of physical contacts between species in these ecological processes. To model the wine yeast fermentation ecosystem, high-throughput flow cytometry-based approaches were developed, and specific models based on a machine-learning approach were developed. In winery wastewater, laboratory-based evolution of two species exposed to biotic selection pressure in a synthetic environment, Saccharomyces cerevisiae and the microalga Chlorella sorokiniana, identified two specific genes involved in carbon and nitrogen catabolite repression that facilitate mutualistic behaviors between yeast and microalgae when inactive. Taken together the data suggest novel strategies for microbial ecosystem-based decision making in wine making and improved integration of natural microbial biodiversity in the process.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian F. Bauer, Cleo Conacher, Jennifer Oosthuizen, Georgia Strydom, Evodia Setati, Rene Naidoo-Blassoples

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.