terclim by ICS banner
IVES 9 IVES Conference Series 9 Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Abstract

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species diversity of many of the relevant ecological niches within the broader wine environment, from vineyard soils to plants and grapes to fermentation. The data highlight that species identities and diversity significantly impact agronomic performance of vineyards as well as wine quality, but the complexity of these systems and of microbial growth dynamics has defeated attempts to offer actionable tools to guide or predict specific outcomes of ecosystem-based interventions. The application of such tools in future will depend on our understanding of the physiological and molecular drivers that govern microbial ecosystems. Here we describe several integrated approaches to characterize the molecular interactions between species within the fermentation and the waste-water ecosystem and to model the development of these ecosystems. Binary (two species) and consortia-based approaches indicate ecosystem-specific developmental patterns in these systems. On a molecular level, data strongly support that cell-wall related properties of yeast species impact the development of fermentation ecosystems during wine making and highlight the importance of physical contacts between species in these ecological processes. To model the wine yeast fermentation ecosystem, high-throughput flow cytometry-based approaches were developed, and specific models based on a machine-learning approach were developed. In winery wastewater, laboratory-based evolution of two species exposed to biotic selection pressure in a synthetic environment, Saccharomyces cerevisiae and the microalga Chlorella sorokiniana, identified two specific genes involved in carbon and nitrogen catabolite repression that facilitate mutualistic behaviors between yeast and microalgae when inactive. Taken together the data suggest novel strategies for microbial ecosystem-based decision making in wine making and improved integration of natural microbial biodiversity in the process.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian F. Bauer, Cleo Conacher, Jennifer Oosthuizen, Georgia Strydom, Evodia Setati, Rene Naidoo-Blassoples

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.