terclim by ICS banner
IVES 9 IVES Conference Series 9 Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Abstract

Context and purpose of the study

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity. Thus, the present study aims to characterize the aromatic composition of a large pool of Vitis vinifera cultivars through the analyses of some impacting aromatic compounds. Then, aromatic composition of traditional-Bordeaux varieties and non-Bordeaux varieties are compared.

Materials and Methods

A 2-hectares plot of 84 cultivars was planted in 2013, in the Médoc wine region (France) within the vineyards of a wine estate. Amongst this very large collection of cultivars, a pool of 25 red varieties was isolated, including traditional Bordeaux varieties and potential candidates for introduction in the Bordeaux varietal mix. Each of those varieties has been separately vinified since 2018 in 2hL stainless steel tanks, close to commercial wine production conditions. 46 major aroma compounds were then quanti- fied in each variety for each vintage (from three to five vintages per cultivar) by gas chromatography and mass spectrometry (GC-MS). Statistical analyses, including hierarchical clustering analysis (HCA) and principal component analysis (PCA) was then performed on this unique dataset for aroma profile characterization and to discriminate and isolate varieties according to their aromatic composition.

Results

As expected, analyses resulted in a strong varietal characterization of the different wines with a significant vintage effect on some of the aroma compounds. Of the 46 aroma compounds analyzed, a select few appear to explain a large part of the Bordeaux wines aromatic composition. Clustering of cultivars was possible, and Bordeaux cultivars group well together into a unique cluster. Interestingly, a few non-traditional Bordeaux cultivars were close to some of the classical Bordeaux varieties in both the HCA and PCA analyses. These results enhanced the idea that some non-native cultivars could be introduced in the Bordeaux cultivar mix while maintaining some of the wine typicity. This methodology could help other established wine regions to identify varieties that could be potential candidates for adaptation to climate change.

  1. Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J Wine Econ 2016, 11 (1), 150–167. https://doi.org/10.1017/jwe.2015.21.
  2. Destrac-Irvine, A.; Van Leeuwen, K. VitAdapt, an Experimental Program to Study the Behavior of a Wide Range of Grape Varieties of Vitis Vinifera in a Context of Climate Change in the Bordeaux Vineyards, 2018. https://hal.archives-ouvertes.fr/ hal-03179912 (accessed 2023-02-13).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marc Plantevin1, Cécile Thibon2,3, Julien Lecourt4, Justine Garbay2,3, Jean-Christophe Barbe2,3, Georgia Lytra2,3, Philippe Darriet2,3, Cornelis Van Leeuwen1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
4 Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

Aromatic Composition, Aroma Compounds, Climate Change, GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.