terclim by ICS banner
IVES 9 IVES Conference Series 9 Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Abstract

Context and purpose of the study

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity. Thus, the present study aims to characterize the aromatic composition of a large pool of Vitis vinifera cultivars through the analyses of some impacting aromatic compounds. Then, aromatic composition of traditional-Bordeaux varieties and non-Bordeaux varieties are compared.

Materials and Methods

A 2-hectares plot of 84 cultivars was planted in 2013, in the Médoc wine region (France) within the vineyards of a wine estate. Amongst this very large collection of cultivars, a pool of 25 red varieties was isolated, including traditional Bordeaux varieties and potential candidates for introduction in the Bordeaux varietal mix. Each of those varieties has been separately vinified since 2018 in 2hL stainless steel tanks, close to commercial wine production conditions. 46 major aroma compounds were then quanti- fied in each variety for each vintage (from three to five vintages per cultivar) by gas chromatography and mass spectrometry (GC-MS). Statistical analyses, including hierarchical clustering analysis (HCA) and principal component analysis (PCA) was then performed on this unique dataset for aroma profile characterization and to discriminate and isolate varieties according to their aromatic composition.

Results

As expected, analyses resulted in a strong varietal characterization of the different wines with a significant vintage effect on some of the aroma compounds. Of the 46 aroma compounds analyzed, a select few appear to explain a large part of the Bordeaux wines aromatic composition. Clustering of cultivars was possible, and Bordeaux cultivars group well together into a unique cluster. Interestingly, a few non-traditional Bordeaux cultivars were close to some of the classical Bordeaux varieties in both the HCA and PCA analyses. These results enhanced the idea that some non-native cultivars could be introduced in the Bordeaux cultivar mix while maintaining some of the wine typicity. This methodology could help other established wine regions to identify varieties that could be potential candidates for adaptation to climate change.

  1. Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J Wine Econ 2016, 11 (1), 150–167. https://doi.org/10.1017/jwe.2015.21.
  2. Destrac-Irvine, A.; Van Leeuwen, K. VitAdapt, an Experimental Program to Study the Behavior of a Wide Range of Grape Varieties of Vitis Vinifera in a Context of Climate Change in the Bordeaux Vineyards, 2018. https://hal.archives-ouvertes.fr/ hal-03179912 (accessed 2023-02-13).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marc Plantevin1, Cécile Thibon2,3, Julien Lecourt4, Justine Garbay2,3, Jean-Christophe Barbe2,3, Georgia Lytra2,3, Philippe Darriet2,3, Cornelis Van Leeuwen1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
4 Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

Aromatic Composition, Aroma Compounds, Climate Change, GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.