terclim by ICS banner
IVES 9 IVES Conference Series 9 Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Abstract

Context and purpose of the study

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity. Thus, the present study aims to characterize the aromatic composition of a large pool of Vitis vinifera cultivars through the analyses of some impacting aromatic compounds. Then, aromatic composition of traditional-Bordeaux varieties and non-Bordeaux varieties are compared.

Materials and Methods

A 2-hectares plot of 84 cultivars was planted in 2013, in the Médoc wine region (France) within the vineyards of a wine estate. Amongst this very large collection of cultivars, a pool of 25 red varieties was isolated, including traditional Bordeaux varieties and potential candidates for introduction in the Bordeaux varietal mix. Each of those varieties has been separately vinified since 2018 in 2hL stainless steel tanks, close to commercial wine production conditions. 46 major aroma compounds were then quanti- fied in each variety for each vintage (from three to five vintages per cultivar) by gas chromatography and mass spectrometry (GC-MS). Statistical analyses, including hierarchical clustering analysis (HCA) and principal component analysis (PCA) was then performed on this unique dataset for aroma profile characterization and to discriminate and isolate varieties according to their aromatic composition.

Results

As expected, analyses resulted in a strong varietal characterization of the different wines with a significant vintage effect on some of the aroma compounds. Of the 46 aroma compounds analyzed, a select few appear to explain a large part of the Bordeaux wines aromatic composition. Clustering of cultivars was possible, and Bordeaux cultivars group well together into a unique cluster. Interestingly, a few non-traditional Bordeaux cultivars were close to some of the classical Bordeaux varieties in both the HCA and PCA analyses. These results enhanced the idea that some non-native cultivars could be introduced in the Bordeaux cultivar mix while maintaining some of the wine typicity. This methodology could help other established wine regions to identify varieties that could be potential candidates for adaptation to climate change.

  1. Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J Wine Econ 2016, 11 (1), 150–167. https://doi.org/10.1017/jwe.2015.21.
  2. Destrac-Irvine, A.; Van Leeuwen, K. VitAdapt, an Experimental Program to Study the Behavior of a Wide Range of Grape Varieties of Vitis Vinifera in a Context of Climate Change in the Bordeaux Vineyards, 2018. https://hal.archives-ouvertes.fr/ hal-03179912 (accessed 2023-02-13).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marc Plantevin1, Cécile Thibon2,3, Julien Lecourt4, Justine Garbay2,3, Jean-Christophe Barbe2,3, Georgia Lytra2,3, Philippe Darriet2,3, Cornelis Van Leeuwen1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
4 Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

Aromatic Composition, Aroma Compounds, Climate Change, GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.