terclim by ICS banner
IVES 9 IVES Conference Series 9 Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Abstract

Context and purpose of the study

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity. Thus, the present study aims to characterize the aromatic composition of a large pool of Vitis vinifera cultivars through the analyses of some impacting aromatic compounds. Then, aromatic composition of traditional-Bordeaux varieties and non-Bordeaux varieties are compared.

Materials and Methods

A 2-hectares plot of 84 cultivars was planted in 2013, in the Médoc wine region (France) within the vineyards of a wine estate. Amongst this very large collection of cultivars, a pool of 25 red varieties was isolated, including traditional Bordeaux varieties and potential candidates for introduction in the Bordeaux varietal mix. Each of those varieties has been separately vinified since 2018 in 2hL stainless steel tanks, close to commercial wine production conditions. 46 major aroma compounds were then quanti- fied in each variety for each vintage (from three to five vintages per cultivar) by gas chromatography and mass spectrometry (GC-MS). Statistical analyses, including hierarchical clustering analysis (HCA) and principal component analysis (PCA) was then performed on this unique dataset for aroma profile characterization and to discriminate and isolate varieties according to their aromatic composition.

Results

As expected, analyses resulted in a strong varietal characterization of the different wines with a significant vintage effect on some of the aroma compounds. Of the 46 aroma compounds analyzed, a select few appear to explain a large part of the Bordeaux wines aromatic composition. Clustering of cultivars was possible, and Bordeaux cultivars group well together into a unique cluster. Interestingly, a few non-traditional Bordeaux cultivars were close to some of the classical Bordeaux varieties in both the HCA and PCA analyses. These results enhanced the idea that some non-native cultivars could be introduced in the Bordeaux cultivar mix while maintaining some of the wine typicity. This methodology could help other established wine regions to identify varieties that could be potential candidates for adaptation to climate change.

  1. Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J Wine Econ 2016, 11 (1), 150–167. https://doi.org/10.1017/jwe.2015.21.
  2. Destrac-Irvine, A.; Van Leeuwen, K. VitAdapt, an Experimental Program to Study the Behavior of a Wide Range of Grape Varieties of Vitis Vinifera in a Context of Climate Change in the Bordeaux Vineyards, 2018. https://hal.archives-ouvertes.fr/ hal-03179912 (accessed 2023-02-13).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marc Plantevin1, Cécile Thibon2,3, Julien Lecourt4, Justine Garbay2,3, Jean-Christophe Barbe2,3, Georgia Lytra2,3, Philippe Darriet2,3, Cornelis Van Leeuwen1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
3 Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
4 Pôle Scientifique, Bernard Margez Grands Vignobles, 33000 Bordeaux, France

Contact the author*

Keywords

Aromatic Composition, Aroma Compounds, Climate Change, GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.