terclim by ICS banner
IVES 9 IVES Conference Series 9 ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

Abstract

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups. Such extreme strains called ACIDIC or DEMALIC have been compared in several grape juices in order to evaluate their technological and sensorial impact on the resulting wines. Beside routine phenotypic characterization (fermentation kinetics and basic enological analyses), targeted NMR metabolomic as well as LC-MS non targeted metabolomics were used for characterizing such group of strains. These ACIDIC or DEMALIC strains definitively challenge a wide range of industrial starters and provide new tools for managing the rising problem of acidity in the context of global warming change.

1. Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. Front Fungal Biol. 2021;2. doi:10.3389/ffunb.2021.733513

2. Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of malic-consuming Saccharomyces cerevisiae strains for winemaking. Efficiency and limits of a QTL’s driven breeding program. J Fungi. 2021;7: 1–25. doi:10.20944/pre- prints202103.0132.v1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Charlotte Vion 1,2, Marie Le Scanff 2, Muro Maïtena1,2, Bernard Margaux1,2, Richard Bruce1,2, Fautré Valentine1,2, Coulon Joana1, Pel- tier Emilien1,2, Le Mao Inès2, Richard Tristan2, Da Costa Grégory2, Marchal Axel2, Marullo Philippe1,2

1 Biolaffort, Bordeaux, FRANCE
2 UMR 1366 Œnologie, Univ. Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux INP, ISVV

Contact the author*

Keywords

Acidity perception, Malic acid, Wine yeast

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.