terclim by ICS banner
IVES 9 IVES Conference Series 9 ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

Abstract

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups. Such extreme strains called ACIDIC or DEMALIC have been compared in several grape juices in order to evaluate their technological and sensorial impact on the resulting wines. Beside routine phenotypic characterization (fermentation kinetics and basic enological analyses), targeted NMR metabolomic as well as LC-MS non targeted metabolomics were used for characterizing such group of strains. These ACIDIC or DEMALIC strains definitively challenge a wide range of industrial starters and provide new tools for managing the rising problem of acidity in the context of global warming change.

1. Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. Front Fungal Biol. 2021;2. doi:10.3389/ffunb.2021.733513

2. Vion C, Peltier E, Bernard M, Muro M, Marullo P. Marker Assisted Selection of malic-consuming Saccharomyces cerevisiae strains for winemaking. Efficiency and limits of a QTL’s driven breeding program. J Fungi. 2021;7: 1–25. doi:10.20944/pre- prints202103.0132.v1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Charlotte Vion 1,2, Marie Le Scanff 2, Muro Maïtena1,2, Bernard Margaux1,2, Richard Bruce1,2, Fautré Valentine1,2, Coulon Joana1, Pel- tier Emilien1,2, Le Mao Inès2, Richard Tristan2, Da Costa Grégory2, Marchal Axel2, Marullo Philippe1,2

1 Biolaffort, Bordeaux, FRANCE
2 UMR 1366 Œnologie, Univ. Bordeaux, INRAE, Bordeaux Science Agro, Bordeaux INP, ISVV

Contact the author*

Keywords

Acidity perception, Malic acid, Wine yeast

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].