terclim by ICS banner
IVES 9 IVES Conference Series 9 SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

Abstract

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine. All wines underwent basic chemical analyses and a subset of 10 wines was subjected to preference trials with Australian white wine consumers (n = 102) who consumed white wine at least monthly. Consumers liked 9 of the 10 wines, scoring them greater than 5 on a 9-point hedonic scale. Verdejo and Garganega, the second and third most liked wines, could potentially be offered as an alternative to Pinot Gris, due to their similar sensory attributes. Arinto and Greco could become alternative wines to Chardonnay; and Fiano to Riesling. These findings provide more accurate information about the potential performance of these new wines in the Australian market and suggest wine producers could provide alternative wine styles which meet the taste specifications of this competitive market, yet promote a more sustainable grape and wine industry as it faces the impact of climate change. The adoption of drought tolerant varieties will potentially reduce the amount of water needed for irrigation, increase yield and income. Moreover, sustainable Australian wine products may introduce a point of difference in the current global market.

 

1. Mezei, L. V., Johnson, T. E., Goodman, S., Collins, C., & Bastian, S. E. P. (2021). Meeting the demands of climate change: Austra-lian consumer acceptance and sensory profiling of red wines produced from non-traditional red grape varieties. Oeno One, 55(2). https://doi.org/10.20870/oeno-one.2021.55.2.4571
2. Danner, L., Crump, A. M., Croker, A., Gambetta, J. M., Johnson, T. E., & Bastian, S. E. P. (2018). Comparison of rate-all-that-ap-ply and descriptive analysis for the sensory profiling of wine. American Journal of Enology and Viticulture, 69(1).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Laura V. Mezei¹, Lira Souza Gonzaga¹, Trent E. Johnson¹, Steve Goodman², Cassandra Collins¹ and Susan E. P. Bastian¹*

Department of Wine Science, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
2 The University of Adelaide Business School, South Australia 5005, Australia

Contact the author*

Keywords

Rate-All-That-Apply, drought tolerant, sensory profiles, consumer acceptance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.