terclim by ICS banner
IVES 9 IVES Conference Series 9 SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

Abstract

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine. All wines underwent basic chemical analyses and a subset of 10 wines was subjected to preference trials with Australian white wine consumers (n = 102) who consumed white wine at least monthly. Consumers liked 9 of the 10 wines, scoring them greater than 5 on a 9-point hedonic scale. Verdejo and Garganega, the second and third most liked wines, could potentially be offered as an alternative to Pinot Gris, due to their similar sensory attributes. Arinto and Greco could become alternative wines to Chardonnay; and Fiano to Riesling. These findings provide more accurate information about the potential performance of these new wines in the Australian market and suggest wine producers could provide alternative wine styles which meet the taste specifications of this competitive market, yet promote a more sustainable grape and wine industry as it faces the impact of climate change. The adoption of drought tolerant varieties will potentially reduce the amount of water needed for irrigation, increase yield and income. Moreover, sustainable Australian wine products may introduce a point of difference in the current global market.

 

1. Mezei, L. V., Johnson, T. E., Goodman, S., Collins, C., & Bastian, S. E. P. (2021). Meeting the demands of climate change: Austra-lian consumer acceptance and sensory profiling of red wines produced from non-traditional red grape varieties. Oeno One, 55(2). https://doi.org/10.20870/oeno-one.2021.55.2.4571
2. Danner, L., Crump, A. M., Croker, A., Gambetta, J. M., Johnson, T. E., & Bastian, S. E. P. (2018). Comparison of rate-all-that-ap-ply and descriptive analysis for the sensory profiling of wine. American Journal of Enology and Viticulture, 69(1).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Laura V. Mezei¹, Lira Souza Gonzaga¹, Trent E. Johnson¹, Steve Goodman², Cassandra Collins¹ and Susan E. P. Bastian¹*

Department of Wine Science, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
2 The University of Adelaide Business School, South Australia 5005, Australia

Contact the author*

Keywords

Rate-All-That-Apply, drought tolerant, sensory profiles, consumer acceptance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.