terclim by ICS banner
IVES 9 IVES Conference Series 9 SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

Abstract

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine. All wines underwent basic chemical analyses and a subset of 10 wines was subjected to preference trials with Australian white wine consumers (n = 102) who consumed white wine at least monthly. Consumers liked 9 of the 10 wines, scoring them greater than 5 on a 9-point hedonic scale. Verdejo and Garganega, the second and third most liked wines, could potentially be offered as an alternative to Pinot Gris, due to their similar sensory attributes. Arinto and Greco could become alternative wines to Chardonnay; and Fiano to Riesling. These findings provide more accurate information about the potential performance of these new wines in the Australian market and suggest wine producers could provide alternative wine styles which meet the taste specifications of this competitive market, yet promote a more sustainable grape and wine industry as it faces the impact of climate change. The adoption of drought tolerant varieties will potentially reduce the amount of water needed for irrigation, increase yield and income. Moreover, sustainable Australian wine products may introduce a point of difference in the current global market.

 

1. Mezei, L. V., Johnson, T. E., Goodman, S., Collins, C., & Bastian, S. E. P. (2021). Meeting the demands of climate change: Austra-lian consumer acceptance and sensory profiling of red wines produced from non-traditional red grape varieties. Oeno One, 55(2). https://doi.org/10.20870/oeno-one.2021.55.2.4571
2. Danner, L., Crump, A. M., Croker, A., Gambetta, J. M., Johnson, T. E., & Bastian, S. E. P. (2018). Comparison of rate-all-that-ap-ply and descriptive analysis for the sensory profiling of wine. American Journal of Enology and Viticulture, 69(1).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Laura V. Mezei¹, Lira Souza Gonzaga¹, Trent E. Johnson¹, Steve Goodman², Cassandra Collins¹ and Susan E. P. Bastian¹*

Department of Wine Science, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
2 The University of Adelaide Business School, South Australia 5005, Australia

Contact the author*

Keywords

Rate-All-That-Apply, drought tolerant, sensory profiles, consumer acceptance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].