terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Abstract

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Changes in microbial diversity and dynamics, especially mycobiota colonizing grapes, was evaluated at 5 berry ripening and vinification stages in 31 vineyards for two harvests. Grapes were collected at fruit set, veraison and harvest and micro-pressing (40 kg) and micro-vinifications (5L) of grape musts from each vineyard were performed.

For both harvests, fungal counts increased during berry ripening (although lower counts were observed in 2022 versus 2021), remained relatively high in musts before yeasts solely dominated in laboratory wines. Clear shifts in mycobiota diversity were observed from vine to laboratory wine for both years. Berries were dominated by yeasts (including filamentous Aureobasidium spp.) regardless of ripening stage with an increase in mold diversity during ripening. Cladosporium (7 species identified) were predominant in unmature berries before other molds colonized grapes, especially Penicillium (9 species identified) and Botrytis cinerea, from veraison onwards. Metagenetic analyses (equivalent to 450 samples in 2021) were well correlated with culture-dependent data. This approach confirmed the predominance of yeasts (Aureobasidium and Vishniacozyma) at both fruit set and veraison, in addition to Cladosporium, although higher fungal diversity and variability between musts was observed.

This unprecedent and thorough description of mycobiota from unmature berries to microvinified wines will clearly contribute to a better understanding of the fungal determinants of specific traits linked to wine quality or defects. Microbial co-occurrence networks and global analyses with the generated climatic data and vineyard practices is currently being explored to understand species interactions and identify factors shaping mycobiota composition.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Adrien Destanque1,2*, Adeline Picot1, Flora Pensec1, Nolwenn Rolland1, Audrey Pawtowski1, Sylvie Treguer-Fernandez1, Lau-rence Guérin2, Laurence Mercier2, Emmanuel Coton1, Marion Hervé2 and Monika Coton1

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, 51530 Oiry, France

Contact the author*

Keywords

Mycobiota, Diversity, Metagenetics, Co-occurrence networks

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.