terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Abstract

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Changes in microbial diversity and dynamics, especially mycobiota colonizing grapes, was evaluated at 5 berry ripening and vinification stages in 31 vineyards for two harvests. Grapes were collected at fruit set, veraison and harvest and micro-pressing (40 kg) and micro-vinifications (5L) of grape musts from each vineyard were performed.

For both harvests, fungal counts increased during berry ripening (although lower counts were observed in 2022 versus 2021), remained relatively high in musts before yeasts solely dominated in laboratory wines. Clear shifts in mycobiota diversity were observed from vine to laboratory wine for both years. Berries were dominated by yeasts (including filamentous Aureobasidium spp.) regardless of ripening stage with an increase in mold diversity during ripening. Cladosporium (7 species identified) were predominant in unmature berries before other molds colonized grapes, especially Penicillium (9 species identified) and Botrytis cinerea, from veraison onwards. Metagenetic analyses (equivalent to 450 samples in 2021) were well correlated with culture-dependent data. This approach confirmed the predominance of yeasts (Aureobasidium and Vishniacozyma) at both fruit set and veraison, in addition to Cladosporium, although higher fungal diversity and variability between musts was observed.

This unprecedent and thorough description of mycobiota from unmature berries to microvinified wines will clearly contribute to a better understanding of the fungal determinants of specific traits linked to wine quality or defects. Microbial co-occurrence networks and global analyses with the generated climatic data and vineyard practices is currently being explored to understand species interactions and identify factors shaping mycobiota composition.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Adrien Destanque1,2*, Adeline Picot1, Flora Pensec1, Nolwenn Rolland1, Audrey Pawtowski1, Sylvie Treguer-Fernandez1, Lau-rence Guérin2, Laurence Mercier2, Emmanuel Coton1, Marion Hervé2 and Monika Coton1

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, 51530 Oiry, France

Contact the author*

Keywords

Mycobiota, Diversity, Metagenetics, Co-occurrence networks

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.