terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Abstract

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Changes in microbial diversity and dynamics, especially mycobiota colonizing grapes, was evaluated at 5 berry ripening and vinification stages in 31 vineyards for two harvests. Grapes were collected at fruit set, veraison and harvest and micro-pressing (40 kg) and micro-vinifications (5L) of grape musts from each vineyard were performed.

For both harvests, fungal counts increased during berry ripening (although lower counts were observed in 2022 versus 2021), remained relatively high in musts before yeasts solely dominated in laboratory wines. Clear shifts in mycobiota diversity were observed from vine to laboratory wine for both years. Berries were dominated by yeasts (including filamentous Aureobasidium spp.) regardless of ripening stage with an increase in mold diversity during ripening. Cladosporium (7 species identified) were predominant in unmature berries before other molds colonized grapes, especially Penicillium (9 species identified) and Botrytis cinerea, from veraison onwards. Metagenetic analyses (equivalent to 450 samples in 2021) were well correlated with culture-dependent data. This approach confirmed the predominance of yeasts (Aureobasidium and Vishniacozyma) at both fruit set and veraison, in addition to Cladosporium, although higher fungal diversity and variability between musts was observed.

This unprecedent and thorough description of mycobiota from unmature berries to microvinified wines will clearly contribute to a better understanding of the fungal determinants of specific traits linked to wine quality or defects. Microbial co-occurrence networks and global analyses with the generated climatic data and vineyard practices is currently being explored to understand species interactions and identify factors shaping mycobiota composition.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Adrien Destanque1,2*, Adeline Picot1, Flora Pensec1, Nolwenn Rolland1, Audrey Pawtowski1, Sylvie Treguer-Fernandez1, Lau-rence Guérin2, Laurence Mercier2, Emmanuel Coton1, Marion Hervé2 and Monika Coton1

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, 51530 Oiry, France

Contact the author*

Keywords

Mycobiota, Diversity, Metagenetics, Co-occurrence networks

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.