terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Abstract

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Changes in microbial diversity and dynamics, especially mycobiota colonizing grapes, was evaluated at 5 berry ripening and vinification stages in 31 vineyards for two harvests. Grapes were collected at fruit set, veraison and harvest and micro-pressing (40 kg) and micro-vinifications (5L) of grape musts from each vineyard were performed.

For both harvests, fungal counts increased during berry ripening (although lower counts were observed in 2022 versus 2021), remained relatively high in musts before yeasts solely dominated in laboratory wines. Clear shifts in mycobiota diversity were observed from vine to laboratory wine for both years. Berries were dominated by yeasts (including filamentous Aureobasidium spp.) regardless of ripening stage with an increase in mold diversity during ripening. Cladosporium (7 species identified) were predominant in unmature berries before other molds colonized grapes, especially Penicillium (9 species identified) and Botrytis cinerea, from veraison onwards. Metagenetic analyses (equivalent to 450 samples in 2021) were well correlated with culture-dependent data. This approach confirmed the predominance of yeasts (Aureobasidium and Vishniacozyma) at both fruit set and veraison, in addition to Cladosporium, although higher fungal diversity and variability between musts was observed.

This unprecedent and thorough description of mycobiota from unmature berries to microvinified wines will clearly contribute to a better understanding of the fungal determinants of specific traits linked to wine quality or defects. Microbial co-occurrence networks and global analyses with the generated climatic data and vineyard practices is currently being explored to understand species interactions and identify factors shaping mycobiota composition.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Adrien Destanque1,2*, Adeline Picot1, Flora Pensec1, Nolwenn Rolland1, Audrey Pawtowski1, Sylvie Treguer-Fernandez1, Lau-rence Guérin2, Laurence Mercier2, Emmanuel Coton1, Marion Hervé2 and Monika Coton1

1. Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
2. Centre de Recherche Robert-Jean de Vogüé Moët Hennessy, 51530 Oiry, France

Contact the author*

Keywords

Mycobiota, Diversity, Metagenetics, Co-occurrence networks

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.