terclim by ICS banner
IVES 9 IVES Conference Series 9 ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

Abstract

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.

In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

The work was further expanded by studying the effects of 8 individual polyphenols (delphinidin, malvidin, caffeic and coumaric acids, catechin, epigallocatechin, quercetin and myricetin) in normalized wine models subjected to a forced oxidation procedure on the O2 consumption rates (OCRs) and acetaldehyde and SAs accumulation rates.

Most surprisingly, all polyphenols but anthocyanins, initially slowed down OCRs observed in the plain wine model, which contained cation metals, hydrogen sulfide, cysteine and glutathione in reduced forms. Leaving aside anthocyanins, only B-ring tri-hydroxylated polyphenols were able to consume all O2 supplied. Moreover, the polyphenol determined also the fraction of ethanol oxidized to acetaldehyde. Catechin is the strongest inducer of ethanol oxidation, while delphinidin and epigallocatechin were the weakest.

Regarding SAs, the surprising finding is that, considering formation per O2 consumed, these are most efficiently formed in the basic wine model without polyphenols. Efficiency comes to a minimum with delphinidin, followed by coumaric acid and malvidin.

These set of results introduces a completely new perspective to wine oxidation kinetics and to the accumulation of aldehydes.

Funded by Spanish MICYN, PID2021-126031OB-C21

1. Bueno-Aventin, E., Escudero, A., Fernandez-Zurbano, P., & Ferreira, V. (2021). Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. J Agric Food Chem, 69(50), 15290-15300

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Vicente Ferreira, Elena Bueno-Aventín, Ignacio Ontañón, Ana Escuder

Laboratorio de Análisis del Aroma y Enología -LAAE. Affiliated to Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA). Dept. Anal. Chem., Fac. of Sciences, University of Zaragoza, 50009 Zaragoza, SPAIN

Contact the author*

Keywords

oxidation, acetaldehyde, Strecker aldehydes, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.