terclim by ICS banner
IVES 9 IVES Conference Series 9 ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

Abstract

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.

In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

The work was further expanded by studying the effects of 8 individual polyphenols (delphinidin, malvidin, caffeic and coumaric acids, catechin, epigallocatechin, quercetin and myricetin) in normalized wine models subjected to a forced oxidation procedure on the O2 consumption rates (OCRs) and acetaldehyde and SAs accumulation rates.

Most surprisingly, all polyphenols but anthocyanins, initially slowed down OCRs observed in the plain wine model, which contained cation metals, hydrogen sulfide, cysteine and glutathione in reduced forms. Leaving aside anthocyanins, only B-ring tri-hydroxylated polyphenols were able to consume all O2 supplied. Moreover, the polyphenol determined also the fraction of ethanol oxidized to acetaldehyde. Catechin is the strongest inducer of ethanol oxidation, while delphinidin and epigallocatechin were the weakest.

Regarding SAs, the surprising finding is that, considering formation per O2 consumed, these are most efficiently formed in the basic wine model without polyphenols. Efficiency comes to a minimum with delphinidin, followed by coumaric acid and malvidin.

These set of results introduces a completely new perspective to wine oxidation kinetics and to the accumulation of aldehydes.

Funded by Spanish MICYN, PID2021-126031OB-C21

1. Bueno-Aventin, E., Escudero, A., Fernandez-Zurbano, P., & Ferreira, V. (2021). Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. J Agric Food Chem, 69(50), 15290-15300

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Vicente Ferreira, Elena Bueno-Aventín, Ignacio Ontañón, Ana Escuder

Laboratorio de Análisis del Aroma y Enología -LAAE. Affiliated to Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA). Dept. Anal. Chem., Fac. of Sciences, University of Zaragoza, 50009 Zaragoza, SPAIN

Contact the author*

Keywords

oxidation, acetaldehyde, Strecker aldehydes, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...