terclim by ICS banner
IVES 9 IVES Conference Series 9 AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

Abstract

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

An extensive survey was conducted on 18 monovarietal Italian still white wines with the aim of elucidating the behaviours of different volatile compounds during aging. In particular, a range of volatile compounds including terpenes, norisoprenoids, benzenoids and volatile sulfur compounds was investigated. A total of 108 different samples were analysed, including Nosiola, Vermentino, Müller-Thurgau, Greco di Tufo, Garganega, Lugana, Erbaluce di Caluso, Pinot Grigio, Cortese, Arneis, Albana, Pallagrello, Falanghina, Fiano, Ribolla Gialla, Vernaccia, Gewürztraminer, Verdicchio. All wines were adjusted to 30 mg/L of free SO2 and submitted to an accelerated aging protocol involving storage for 30 days 10 °C, 40 °C and 60°C in oxygen-free environment. Volatile compounds were analysed by means a combination of analytical methods based on SPME-GC-MS.

During aging some common trends were observed, among which a decrease in linear terpenes and an increase in bicyclic terpenes, non-megastigmane norisoprenoids and volatile sulfur compounds. From a quantitative point of view, the extent of these transformations varied significantly according to wine type. Besides Gewürztraminer, which was generally rich in terpenes, other wine types such as Vermentino Verdicchio and Lugana showed peculiar terpene patterns, for example accumulation of above-threshold levels of the bicyclic terpene 1,4-cineole. Regarding non-megastigmane norisoprenoids, Falanghina and Vermentino were found to accumulate high levels of TDN and vitispirane, which was not observed in other wines. Greco accumulated during aging the highest amount of DMS, showing an average content above the odor threshold. Müller-Thurgau, Nosiola and Vermentino also showed concentrations of DMS above the odor threshold after aging. In addition, the latter varieties also showed high accumulation of methanethiol.

As most of these patterns were not seen in young wines, this work highlights the important contribution of aging to the expression of aroma characters that are specific to the identity of individual varieties or wine types.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Giovanni Luzzini1, Nicole Furlan1, Davide Slagheanufi1, Susana Río Segade2, Paola Piombino3, Giuseppina Paola Parpinello4, Matteo Marangon5, Fulvio Mattivi6,7 Maurizio Piergiovanni6,8, Silvia Carlin7, Maurizio Ugliano1

1. University of Verona, Department of Biotechnology, 37039, San Pietro in Cariano (VR) Italy
2. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
3. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avellino (AV), Italy
4. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena (FC), Italy
5. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro (PD), Italy
6. Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige (TN) Italy
7. Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all’Adige (TN) Italy
8. Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), 43124, Parma (PR), Italy

Contact the author*

Keywords

Volatile compounds, white wine, Aging pattern, Varietal typicality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵