terclim by ICS banner
IVES 9 IVES Conference Series 9 AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

Abstract

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

An extensive survey was conducted on 18 monovarietal Italian still white wines with the aim of elucidating the behaviours of different volatile compounds during aging. In particular, a range of volatile compounds including terpenes, norisoprenoids, benzenoids and volatile sulfur compounds was investigated. A total of 108 different samples were analysed, including Nosiola, Vermentino, Müller-Thurgau, Greco di Tufo, Garganega, Lugana, Erbaluce di Caluso, Pinot Grigio, Cortese, Arneis, Albana, Pallagrello, Falanghina, Fiano, Ribolla Gialla, Vernaccia, Gewürztraminer, Verdicchio. All wines were adjusted to 30 mg/L of free SO2 and submitted to an accelerated aging protocol involving storage for 30 days 10 °C, 40 °C and 60°C in oxygen-free environment. Volatile compounds were analysed by means a combination of analytical methods based on SPME-GC-MS.

During aging some common trends were observed, among which a decrease in linear terpenes and an increase in bicyclic terpenes, non-megastigmane norisoprenoids and volatile sulfur compounds. From a quantitative point of view, the extent of these transformations varied significantly according to wine type. Besides Gewürztraminer, which was generally rich in terpenes, other wine types such as Vermentino Verdicchio and Lugana showed peculiar terpene patterns, for example accumulation of above-threshold levels of the bicyclic terpene 1,4-cineole. Regarding non-megastigmane norisoprenoids, Falanghina and Vermentino were found to accumulate high levels of TDN and vitispirane, which was not observed in other wines. Greco accumulated during aging the highest amount of DMS, showing an average content above the odor threshold. Müller-Thurgau, Nosiola and Vermentino also showed concentrations of DMS above the odor threshold after aging. In addition, the latter varieties also showed high accumulation of methanethiol.

As most of these patterns were not seen in young wines, this work highlights the important contribution of aging to the expression of aroma characters that are specific to the identity of individual varieties or wine types.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Giovanni Luzzini1, Nicole Furlan1, Davide Slagheanufi1, Susana Río Segade2, Paola Piombino3, Giuseppina Paola Parpinello4, Matteo Marangon5, Fulvio Mattivi6,7 Maurizio Piergiovanni6,8, Silvia Carlin7, Maurizio Ugliano1

1. University of Verona, Department of Biotechnology, 37039, San Pietro in Cariano (VR) Italy
2. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
3. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avellino (AV), Italy
4. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena (FC), Italy
5. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro (PD), Italy
6. Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige (TN) Italy
7. Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all’Adige (TN) Italy
8. Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), 43124, Parma (PR), Italy

Contact the author*

Keywords

Volatile compounds, white wine, Aging pattern, Varietal typicality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.