terclim by ICS banner
IVES 9 IVES Conference Series 9 AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

Abstract

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

An extensive survey was conducted on 18 monovarietal Italian still white wines with the aim of elucidating the behaviours of different volatile compounds during aging. In particular, a range of volatile compounds including terpenes, norisoprenoids, benzenoids and volatile sulfur compounds was investigated. A total of 108 different samples were analysed, including Nosiola, Vermentino, Müller-Thurgau, Greco di Tufo, Garganega, Lugana, Erbaluce di Caluso, Pinot Grigio, Cortese, Arneis, Albana, Pallagrello, Falanghina, Fiano, Ribolla Gialla, Vernaccia, Gewürztraminer, Verdicchio. All wines were adjusted to 30 mg/L of free SO2 and submitted to an accelerated aging protocol involving storage for 30 days 10 °C, 40 °C and 60°C in oxygen-free environment. Volatile compounds were analysed by means a combination of analytical methods based on SPME-GC-MS.

During aging some common trends were observed, among which a decrease in linear terpenes and an increase in bicyclic terpenes, non-megastigmane norisoprenoids and volatile sulfur compounds. From a quantitative point of view, the extent of these transformations varied significantly according to wine type. Besides Gewürztraminer, which was generally rich in terpenes, other wine types such as Vermentino Verdicchio and Lugana showed peculiar terpene patterns, for example accumulation of above-threshold levels of the bicyclic terpene 1,4-cineole. Regarding non-megastigmane norisoprenoids, Falanghina and Vermentino were found to accumulate high levels of TDN and vitispirane, which was not observed in other wines. Greco accumulated during aging the highest amount of DMS, showing an average content above the odor threshold. Müller-Thurgau, Nosiola and Vermentino also showed concentrations of DMS above the odor threshold after aging. In addition, the latter varieties also showed high accumulation of methanethiol.

As most of these patterns were not seen in young wines, this work highlights the important contribution of aging to the expression of aroma characters that are specific to the identity of individual varieties or wine types.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Giovanni Luzzini1, Nicole Furlan1, Davide Slagheanufi1, Susana Río Segade2, Paola Piombino3, Giuseppina Paola Parpinello4, Matteo Marangon5, Fulvio Mattivi6,7 Maurizio Piergiovanni6,8, Silvia Carlin7, Maurizio Ugliano1

1. University of Verona, Department of Biotechnology, 37039, San Pietro in Cariano (VR) Italy
2. Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
3. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100 Avellino (AV), Italy
4. Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena (FC), Italy
5. Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Le-gnaro (PD), Italy
6. Center Agriculture Food Environment (C3A), University of Trento, 38098, San Michele all’Adige (TN) Italy
7. Research and Innovation Centre, Fondazione Edmund Mach, 38098, San Michele all’Adige (TN) Italy
8. Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), 43124, Parma (PR), Italy

Contact the author*

Keywords

Volatile compounds, white wine, Aging pattern, Varietal typicality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.