GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Grapevine bud fertility under elevated carbon dioxide

Grapevine bud fertility under elevated carbon dioxide

Abstract

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season. Grapevine yield has been shown to increase under elevated carbon dioxide (eCO2) concentration and was demonstrated under Free Air Carbon dioxide Enrichment (FACE) conditions. The effect of eCO2 on bud fertility in regards to this yield gain has not been investigated. However, little is understood about which yield components are affected and at what stage of development this occurs. The aim of this study was to determine the number and cross sectional area of the inflorescence primordia (IP), and the levels of primary bud necrosis (PBN) found in grapevine compound buds grown under two different CO2 conditions and relate this data to yield parameters at harvest of field grown vines.

Methods and results: Plant material was collected in February 2016 and 2017 from two Vitis vinifera cvs., Riesling and Cabernet Sauvignon growing in the VineyardFACE experimental site at Hochschule Geisenheim University (49° 59′ N, 7° 57′ E) in the Rheingau wine region, Germany. Bud dissections were performed at the University of Adelaide’s Waite Research Institute, Australia. There canes were stored at 4°C until dissection at room temperature. The first eight nodes of every cane were dissected and the compounds buds were assessed for primary bud necrosis (PBN), IP number and the cross sectional area of IP using image analysis.
No difference in IP number per node and subsequent number of bunches per shoot was observed between treatments in Riesling. However, larger cross sectional areas of IP were found in the compound buds grown under eCO2. This was not supported by higher bunch weights and yield of Riesling for the eCO2 treatment over the two years. Cabernet Sauvignon showed a higher IP number per node under eCO2 but no changes in bunch number per shoot for the two seasons. A larger cross sectional area of IP was observed under eCO2 treatment. This did translate into significantly higher bunch weights and yields of Cabernet Sauvignonover both seasons. Percentage of PBN was highest in the most basal node position along the fruiting cane. However, average PBN was not affected by eCO2 for both cultivars along the cane.

Conclusions

Microscopic bud dissection can be used as a predictive tool to capture an increased bunch size at an early stage of vine development. There was evidence of a cultivar dependent response to bud fruitfulness under eCO2. It will be of future interest to investigate whether higher carbohydrate levels could be responsible for the increase in IP area detectable at a very early stage of development under eCO2.
Significance and impact of the study:This study contributes to an improvement in ourexisting knowledge about grapevine bud fertility and yield potential particularly under changing climatic conditions.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Yvette WOHLFART1, Cassandra COLLINS2, Manfred STOLL1

(1) Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, 5064, Australia

Contact the author

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Genetics of adventitious root formation in grapevines

Commercial grapevine propagation relies on the ability of dormant wood material to develop adventitious roots.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

Determination of secondary metabolites as quality and typicalness tracers in autochthonous vitis vinifera grapes and wines from Ischia isle

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...