GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Grapevine bud fertility under elevated carbon dioxide

Grapevine bud fertility under elevated carbon dioxide

Abstract

Aims: Microscopic bud dissection is a common tool used to assess grapevine bud fertility and therefore to predict the yield of the following season. Grapevine yield has been shown to increase under elevated carbon dioxide (eCO2) concentration and was demonstrated under Free Air Carbon dioxide Enrichment (FACE) conditions. The effect of eCO2 on bud fertility in regards to this yield gain has not been investigated. However, little is understood about which yield components are affected and at what stage of development this occurs. The aim of this study was to determine the number and cross sectional area of the inflorescence primordia (IP), and the levels of primary bud necrosis (PBN) found in grapevine compound buds grown under two different CO2 conditions and relate this data to yield parameters at harvest of field grown vines.

Methods and results: Plant material was collected in February 2016 and 2017 from two Vitis vinifera cvs., Riesling and Cabernet Sauvignon growing in the VineyardFACE experimental site at Hochschule Geisenheim University (49° 59′ N, 7° 57′ E) in the Rheingau wine region, Germany. Bud dissections were performed at the University of Adelaide’s Waite Research Institute, Australia. There canes were stored at 4°C until dissection at room temperature. The first eight nodes of every cane were dissected and the compounds buds were assessed for primary bud necrosis (PBN), IP number and the cross sectional area of IP using image analysis.
No difference in IP number per node and subsequent number of bunches per shoot was observed between treatments in Riesling. However, larger cross sectional areas of IP were found in the compound buds grown under eCO2. This was not supported by higher bunch weights and yield of Riesling for the eCO2 treatment over the two years. Cabernet Sauvignon showed a higher IP number per node under eCO2 but no changes in bunch number per shoot for the two seasons. A larger cross sectional area of IP was observed under eCO2 treatment. This did translate into significantly higher bunch weights and yields of Cabernet Sauvignonover both seasons. Percentage of PBN was highest in the most basal node position along the fruiting cane. However, average PBN was not affected by eCO2 for both cultivars along the cane.

Conclusions

Microscopic bud dissection can be used as a predictive tool to capture an increased bunch size at an early stage of vine development. There was evidence of a cultivar dependent response to bud fruitfulness under eCO2. It will be of future interest to investigate whether higher carbohydrate levels could be responsible for the increase in IP area detectable at a very early stage of development under eCO2.
Significance and impact of the study:This study contributes to an improvement in ourexisting knowledge about grapevine bud fertility and yield potential particularly under changing climatic conditions.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Yvette WOHLFART1, Cassandra COLLINS2, Manfred STOLL1

(1) Hochschule Geisenheim University, Department of General and Organic Viticulture, Von-Lade-Str. 1, 65366 Geisenheim, Germany
(2) School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, 5064, Australia

Contact the author

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Effets des pratiques agro-viticoles sur l’activité biologique et la matière organique des sols : exemples en Champagne et en Bourgogne

The notion of terroir covers multiple components, from geology, pedology, geomorphology and climatology (Doledec, 1995), to aspects that are less well identified but which also intervene in the “typicality” of wines. This justifies the “zoning” approach (Moncomble and Panigaï, 1990) to define homogeneous areas, under the same agro-viticultural management and also identified at the product level (Morlat and Asselin, 1992).

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

The main objective of this work is to study and model the impact of the polyphenolic profile on the stability and quality of wine aroma during oxidative aging.