terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Abstract

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry. This fact has highlighted the need to develop mitigation strategies to manage the impact of smoke exposure on grapes and the resulting wines (4). Currently there are no recommended mitigation action for grape smoke exposure.
The objective of this experiment was to compare the relative effectiveness of applying different potential protective barrier sprays to grapes in a simulated wildfire scenario. Twelve different material combina-tions were applied close to harvest as potential barrier sprays on three bunches each using four Cabernet Sauvignon vines. The vines were exposed to smoke for two hours three days after the barrier application. Control samples prior to smoke exposure was taken and smoked control (no barrier applied) grapes were sampled at different time points after exposure. For the smoke application a rectangular tent structure was built. The smoke was generated by a wood pellet smoker. Air samples were taken, and atmospheric parameters were monitored during the experiment. Grapes were analysed for free and acid-labile forms of VPs using a GC-MS and for glycosylated forms using UHPLC-qTOF MS.
Results show the presence of smoke and smoke derived compounds, however there was a strong stratifi-cation in the distribution of VPs within the structure. The heterogeneous distribution of smoke is reflected in the different concentrations of uptake of VPs in the grapes. Results from non-treated grapes indicate that glycosylation of the free volatile phenols takes place within hours, with significant increases in almost all glycosylated compounds. However, variation in smoke exposure will affect the glycosylation kinetics of VPs. The study indicated that some sprays exhibited some efficacy in reducing VPs absorption under these conditions. However, other treatments seemed to exacerbate the adsorption of VPs in grapes. In a next step, these barrier sprays will be studied further under field conditions. Acknowledgements: This work has been funded by the USDA-ARS.

 

1. Kennison, K. R., Wilkinson, K. L., Williams, H. G., Smith, J. H., & Gibberd, M. R. (2007). Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. Journal of Agricultural and Food Chemistry, 55(26), 10897–10901. https://doi.org/10.1021/jf072509k
2. Caffrey, A., Lerno, L., Rumbaugh, A., Girardello, R., Zweigenbaum, J., Oberholster, A., & Ebeler, S. E. (2019). Changes in Smoke-Taint Volatile-Phenol Glycosides in Wildfire Smoke-Exposed Cabernet Sauvignon Grapes throughout Winemaking. American Journal of Enology and Viticulture, 70(4), 373–381. https://doi.org/10.5344/ajev.2019.19001
3. Hayasaka, Y., Dungey, K. A., Baldock, G. A., Kennison, K. R., & Wilkinson, K. L. (2010). Identification of a beta-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta, 660(1–2), 143–148. https://doi.org/10.1016/j.aca.2009.10.039
4. Mirabelli-Montan, Y. A., Marangon, M., Graça, A., Mayr Marangon, C. M., & Wilkinson, K. L. (2021). Techniques for mitigating the effects of smoke taint while maintaining quality in wine production: A review. Molecules, 26(6), 1–19. https://doi. org/10.3390/molecules26061672

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Ignacio Arias-Pérez¹, Yan Wen1 and Anita Oberholster¹

1. Department of Viticulture and Enology, University of California Davis, 95616, CA, USA

Contact the author*

Keywords

Smoke taint, Barrier spray, Volatile phenols, Glycosylation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.