terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Abstract

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry. This fact has highlighted the need to develop mitigation strategies to manage the impact of smoke exposure on grapes and the resulting wines (4). Currently there are no recommended mitigation action for grape smoke exposure.
The objective of this experiment was to compare the relative effectiveness of applying different potential protective barrier sprays to grapes in a simulated wildfire scenario. Twelve different material combina-tions were applied close to harvest as potential barrier sprays on three bunches each using four Cabernet Sauvignon vines. The vines were exposed to smoke for two hours three days after the barrier application. Control samples prior to smoke exposure was taken and smoked control (no barrier applied) grapes were sampled at different time points after exposure. For the smoke application a rectangular tent structure was built. The smoke was generated by a wood pellet smoker. Air samples were taken, and atmospheric parameters were monitored during the experiment. Grapes were analysed for free and acid-labile forms of VPs using a GC-MS and for glycosylated forms using UHPLC-qTOF MS.
Results show the presence of smoke and smoke derived compounds, however there was a strong stratifi-cation in the distribution of VPs within the structure. The heterogeneous distribution of smoke is reflected in the different concentrations of uptake of VPs in the grapes. Results from non-treated grapes indicate that glycosylation of the free volatile phenols takes place within hours, with significant increases in almost all glycosylated compounds. However, variation in smoke exposure will affect the glycosylation kinetics of VPs. The study indicated that some sprays exhibited some efficacy in reducing VPs absorption under these conditions. However, other treatments seemed to exacerbate the adsorption of VPs in grapes. In a next step, these barrier sprays will be studied further under field conditions. Acknowledgements: This work has been funded by the USDA-ARS.

 

1. Kennison, K. R., Wilkinson, K. L., Williams, H. G., Smith, J. H., & Gibberd, M. R. (2007). Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. Journal of Agricultural and Food Chemistry, 55(26), 10897–10901. https://doi.org/10.1021/jf072509k
2. Caffrey, A., Lerno, L., Rumbaugh, A., Girardello, R., Zweigenbaum, J., Oberholster, A., & Ebeler, S. E. (2019). Changes in Smoke-Taint Volatile-Phenol Glycosides in Wildfire Smoke-Exposed Cabernet Sauvignon Grapes throughout Winemaking. American Journal of Enology and Viticulture, 70(4), 373–381. https://doi.org/10.5344/ajev.2019.19001
3. Hayasaka, Y., Dungey, K. A., Baldock, G. A., Kennison, K. R., & Wilkinson, K. L. (2010). Identification of a beta-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Analytica Chimica Acta, 660(1–2), 143–148. https://doi.org/10.1016/j.aca.2009.10.039
4. Mirabelli-Montan, Y. A., Marangon, M., Graça, A., Mayr Marangon, C. M., & Wilkinson, K. L. (2021). Techniques for mitigating the effects of smoke taint while maintaining quality in wine production: A review. Molecules, 26(6), 1–19. https://doi. org/10.3390/molecules26061672

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Ignacio Arias-Pérez¹, Yan Wen1 and Anita Oberholster¹

1. Department of Viticulture and Enology, University of California Davis, 95616, CA, USA

Contact the author*

Keywords

Smoke taint, Barrier spray, Volatile phenols, Glycosylation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.