terclim by ICS banner
IVES 9 IVES Conference Series 9 REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Abstract

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses che-mical fingerprints, which require advanced tools such as high-resolution mass spectrometry and mul-tidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Here, we employ state-of-the-art machine learning methods to optimize the analysis of 1-D GC/MS chromatograms. Specifically, we aim to determine whether these chromatograms contain valuable in-formation beyond the manually extracted peaks typically utilized in the targeted approach.

To explore those questions, we analyzed 4 different types of 1-D raw chromatograms (3 SIM and 1 full-scan) of 80 wines (12 vintages from 7 estates of the Bordeaux area. We first applied nonlinear dimensio-nality reduction techniques (T-SNE and UMAP) to the chromatograms to obtain 2D maps. In the resul-ting maps, wines of the same estates across multiple vintages tended to form clear clusters, whose spatial distribution reflected the geography of the Bordeaux wine region. This indicated that, for this particular set of wine, the raw chromatograms are highly informative about terroir and wine identity.

Next, we applied cross-validated classifiers to the raw chromatograms and found that we could recover perfectly well estates identity independent of vintage. By contrast, performance on vintage classifica-tion was much lower with a maximum performance of 50% correct.

Crucially, we found that the entire chromatogram is informative with respect to both of these variables. Thus, the extraction of specific peaks of the chromatogram to quantify the concentration of 32 known chemical compounds–discarding the rest of the chromatograms–led to worse classification perfor-mance, suggesting that estate identity is distributed over a large chemical spectrum, including many molecules that have yet to be identified.

In addition, the GC raw data can be used to predict the ratings of a professional wine critic (Robert Par-ker) above chance, thus suggesting that GC might also contain information about the organoleptic pro-perties of wine.

Overall, this study demonstrates the strong potential of raw chromatogram analysis for wine characte-rization and identification.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Michael Schartner¹, Jeff M. Beck², Justine Laboyrie³, Laurent Riquier³, Stephanie Marchand3*, Alexandre Pouget4*

1. Center for the Unknown. Champalimaud Institute. Lisbon. Portugal. 
2. Duke university. USA
3. Université de Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
4. Département des neurosciences fondamentales. Université de Genève. Suisse. 

Contact the author*

Keywords

Machine learning, Wine composition, Sensorial classification, Terroir

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.