terclim by ICS banner
IVES 9 IVES Conference Series 9 REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Abstract

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses che-mical fingerprints, which require advanced tools such as high-resolution mass spectrometry and mul-tidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Here, we employ state-of-the-art machine learning methods to optimize the analysis of 1-D GC/MS chromatograms. Specifically, we aim to determine whether these chromatograms contain valuable in-formation beyond the manually extracted peaks typically utilized in the targeted approach.

To explore those questions, we analyzed 4 different types of 1-D raw chromatograms (3 SIM and 1 full-scan) of 80 wines (12 vintages from 7 estates of the Bordeaux area. We first applied nonlinear dimensio-nality reduction techniques (T-SNE and UMAP) to the chromatograms to obtain 2D maps. In the resul-ting maps, wines of the same estates across multiple vintages tended to form clear clusters, whose spatial distribution reflected the geography of the Bordeaux wine region. This indicated that, for this particular set of wine, the raw chromatograms are highly informative about terroir and wine identity.

Next, we applied cross-validated classifiers to the raw chromatograms and found that we could recover perfectly well estates identity independent of vintage. By contrast, performance on vintage classifica-tion was much lower with a maximum performance of 50% correct.

Crucially, we found that the entire chromatogram is informative with respect to both of these variables. Thus, the extraction of specific peaks of the chromatogram to quantify the concentration of 32 known chemical compounds–discarding the rest of the chromatograms–led to worse classification perfor-mance, suggesting that estate identity is distributed over a large chemical spectrum, including many molecules that have yet to be identified.

In addition, the GC raw data can be used to predict the ratings of a professional wine critic (Robert Par-ker) above chance, thus suggesting that GC might also contain information about the organoleptic pro-perties of wine.

Overall, this study demonstrates the strong potential of raw chromatogram analysis for wine characte-rization and identification.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Michael Schartner¹, Jeff M. Beck², Justine Laboyrie³, Laurent Riquier³, Stephanie Marchand3*, Alexandre Pouget4*

1. Center for the Unknown. Champalimaud Institute. Lisbon. Portugal. 
2. Duke university. USA
3. Université de Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
4. Département des neurosciences fondamentales. Université de Genève. Suisse. 

Contact the author*

Keywords

Machine learning, Wine composition, Sensorial classification, Terroir

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV. Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.