terclim by ICS banner
IVES 9 IVES Conference Series 9 REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Abstract

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses che-mical fingerprints, which require advanced tools such as high-resolution mass spectrometry and mul-tidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Here, we employ state-of-the-art machine learning methods to optimize the analysis of 1-D GC/MS chromatograms. Specifically, we aim to determine whether these chromatograms contain valuable in-formation beyond the manually extracted peaks typically utilized in the targeted approach.

To explore those questions, we analyzed 4 different types of 1-D raw chromatograms (3 SIM and 1 full-scan) of 80 wines (12 vintages from 7 estates of the Bordeaux area. We first applied nonlinear dimensio-nality reduction techniques (T-SNE and UMAP) to the chromatograms to obtain 2D maps. In the resul-ting maps, wines of the same estates across multiple vintages tended to form clear clusters, whose spatial distribution reflected the geography of the Bordeaux wine region. This indicated that, for this particular set of wine, the raw chromatograms are highly informative about terroir and wine identity.

Next, we applied cross-validated classifiers to the raw chromatograms and found that we could recover perfectly well estates identity independent of vintage. By contrast, performance on vintage classifica-tion was much lower with a maximum performance of 50% correct.

Crucially, we found that the entire chromatogram is informative with respect to both of these variables. Thus, the extraction of specific peaks of the chromatogram to quantify the concentration of 32 known chemical compounds–discarding the rest of the chromatograms–led to worse classification perfor-mance, suggesting that estate identity is distributed over a large chemical spectrum, including many molecules that have yet to be identified.

In addition, the GC raw data can be used to predict the ratings of a professional wine critic (Robert Par-ker) above chance, thus suggesting that GC might also contain information about the organoleptic pro-perties of wine.

Overall, this study demonstrates the strong potential of raw chromatogram analysis for wine characte-rization and identification.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Michael Schartner¹, Jeff M. Beck², Justine Laboyrie³, Laurent Riquier³, Stephanie Marchand3*, Alexandre Pouget4*

1. Center for the Unknown. Champalimaud Institute. Lisbon. Portugal. 
2. Duke university. USA
3. Université de Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
4. Département des neurosciences fondamentales. Université de Genève. Suisse. 

Contact the author*

Keywords

Machine learning, Wine composition, Sensorial classification, Terroir

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.