terclim by ICS banner
IVES 9 IVES Conference Series 9 REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Abstract

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses che-mical fingerprints, which require advanced tools such as high-resolution mass spectrometry and mul-tidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Here, we employ state-of-the-art machine learning methods to optimize the analysis of 1-D GC/MS chromatograms. Specifically, we aim to determine whether these chromatograms contain valuable in-formation beyond the manually extracted peaks typically utilized in the targeted approach.

To explore those questions, we analyzed 4 different types of 1-D raw chromatograms (3 SIM and 1 full-scan) of 80 wines (12 vintages from 7 estates of the Bordeaux area. We first applied nonlinear dimensio-nality reduction techniques (T-SNE and UMAP) to the chromatograms to obtain 2D maps. In the resul-ting maps, wines of the same estates across multiple vintages tended to form clear clusters, whose spatial distribution reflected the geography of the Bordeaux wine region. This indicated that, for this particular set of wine, the raw chromatograms are highly informative about terroir and wine identity.

Next, we applied cross-validated classifiers to the raw chromatograms and found that we could recover perfectly well estates identity independent of vintage. By contrast, performance on vintage classifica-tion was much lower with a maximum performance of 50% correct.

Crucially, we found that the entire chromatogram is informative with respect to both of these variables. Thus, the extraction of specific peaks of the chromatogram to quantify the concentration of 32 known chemical compounds–discarding the rest of the chromatograms–led to worse classification perfor-mance, suggesting that estate identity is distributed over a large chemical spectrum, including many molecules that have yet to be identified.

In addition, the GC raw data can be used to predict the ratings of a professional wine critic (Robert Par-ker) above chance, thus suggesting that GC might also contain information about the organoleptic pro-perties of wine.

Overall, this study demonstrates the strong potential of raw chromatogram analysis for wine characte-rization and identification.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Michael Schartner¹, Jeff M. Beck², Justine Laboyrie³, Laurent Riquier³, Stephanie Marchand3*, Alexandre Pouget4*

1. Center for the Unknown. Champalimaud Institute. Lisbon. Portugal. 
2. Duke university. USA
3. Université de Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
4. Département des neurosciences fondamentales. Université de Genève. Suisse. 

Contact the author*

Keywords

Machine learning, Wine composition, Sensorial classification, Terroir

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).