terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Abstract

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties.

Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four different white and red wine styles, respectively plus one rosé. PIWI varieties as well as four reference Vitis vinifera varieties were planted in the same site. For each vintage, more than 70 winemakers compared the different PIWI styles with the Vitis vinifera reference wines. 70% of the comparisons yielded no significant differences, in 20% PIWI wines were superior and in 10% the reference wines. Regressing intensity ratings obtained by descriptive analysis with hedonic ratings from German, French, Italian, Danish and Dutch consumers, we could deduce drivers of liking in respect to the different cultural back ground. All consumers disliked sour, astringent and green expressions in wines while fruit and colour remained low. Floral and yellow fruits were preferred by French and German consumers, Danish liked thiol-derived flavours.

To unravel the molecular base aroma compounds were analysed non-targeted as well as targeted for monoterpenes, C13-norisoprenoids and polyfunctional thiols applying SIDA-GC-MS or LC-MS. Analysis of phenolic compounds was done by indirect methods such as Folin-C or Harbertson-Adams-Assay as well as targeted analysis by LC-MS or LC-DAD. Comparing Muscaris (PIWI) versus Muskateller Muscaris wines were richer in cis-rose oxide, while linalool and α-terpineol were higher in Muskateller wines. So far, no specific off-flavour could be detected in wines from PIWI varieties as it was the case for old hybrid varieties. Although fungus resistance may be related to grape skin polyphenols, in general neither white nor red PIWI wines revealed higher polyphenol concentrations, except for Muscaris and Cabernet Cortis. A fact which needs to be addressed in winemaking.

In conclusion, applying targeted winemaking allows to produce PIWI wines, which meets the expectations of European consumers in sensory terms, but also in respect to improved sustainability.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Fischer Ulrich¹, Marc Weber¹, Ole Kohlmann¹, Maike Gentner¹, Jochen Vestner¹

1. DLR Rheinpfalz, Institute for Viticutlure and oenology, Breitenweg 71, 67435 Neustadt an der Weinstrass, Germany

Contact the author*

Keywords

fungus resistant grape varieties, consumer preference, aroma compounds, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.