terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Abstract

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties.

Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four different white and red wine styles, respectively plus one rosé. PIWI varieties as well as four reference Vitis vinifera varieties were planted in the same site. For each vintage, more than 70 winemakers compared the different PIWI styles with the Vitis vinifera reference wines. 70% of the comparisons yielded no significant differences, in 20% PIWI wines were superior and in 10% the reference wines. Regressing intensity ratings obtained by descriptive analysis with hedonic ratings from German, French, Italian, Danish and Dutch consumers, we could deduce drivers of liking in respect to the different cultural back ground. All consumers disliked sour, astringent and green expressions in wines while fruit and colour remained low. Floral and yellow fruits were preferred by French and German consumers, Danish liked thiol-derived flavours.

To unravel the molecular base aroma compounds were analysed non-targeted as well as targeted for monoterpenes, C13-norisoprenoids and polyfunctional thiols applying SIDA-GC-MS or LC-MS. Analysis of phenolic compounds was done by indirect methods such as Folin-C or Harbertson-Adams-Assay as well as targeted analysis by LC-MS or LC-DAD. Comparing Muscaris (PIWI) versus Muskateller Muscaris wines were richer in cis-rose oxide, while linalool and α-terpineol were higher in Muskateller wines. So far, no specific off-flavour could be detected in wines from PIWI varieties as it was the case for old hybrid varieties. Although fungus resistance may be related to grape skin polyphenols, in general neither white nor red PIWI wines revealed higher polyphenol concentrations, except for Muscaris and Cabernet Cortis. A fact which needs to be addressed in winemaking.

In conclusion, applying targeted winemaking allows to produce PIWI wines, which meets the expectations of European consumers in sensory terms, but also in respect to improved sustainability.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Fischer Ulrich¹, Marc Weber¹, Ole Kohlmann¹, Maike Gentner¹, Jochen Vestner¹

1. DLR Rheinpfalz, Institute for Viticutlure and oenology, Breitenweg 71, 67435 Neustadt an der Weinstrass, Germany

Contact the author*

Keywords

fungus resistant grape varieties, consumer preference, aroma compounds, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).