terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Abstract

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.

The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

The experimental plan followed a “Temperature (10°C, 15°C, 20°C, 25°C) x Weight loss (0%, 10%, 20%, 30%)” factorial design. Skin and juice free and glycosylated VOCs of grape berries were separately analysed by Solid Phase Extraction/Gas Chromatography–Mass Spectrometry (SPE/GC-MS) [2].

Results showed that skin and juice samples are well discriminated in both varieties, with skins exhibiting a greater aromatic richness, especially in terms of bound VOCs. In Nebbiolo grapes, weight loss showed a greater influence than temperature on free volatiles. This trend was not observed on free VOCs of Aleatico grapes, that were treated with more stressful dehydration conditions of temperature (15°C, 25°C) and weight loss (20%, 30%) compared to Nebbiolo grapes (10°C, 20°C; 10%, 20%).

Temperature seems to play an important role on bound VOCs of both grapes, albeit in a different form. In Nebbiolo grapes, low temperatures (10°C) showed positive correlations with the accumulation of aroma glycosidic precursors. In the case of Aleatico, which is a semi-aromatic variety, dehydration temperatures, appear to modulate terpenes pattern regardless of weight loss. Specifically, samples dehydrated at 15°C correlated with betalinalool, epoxylinalool, cis- and trans-linalool oxide, and geranic acid, while 25°C ones with cis- and trans-geraniol, cis- and trans-citral, α-terpineol, and citronellol.

These results are of interest for optimizing the grape dehydration process not only in an optic of management of product characteristics and varietal oenology, but also in a prospective of management of energy resources needed under controlled dehydration conditions.

 

1. Costantini et al., 2006. DOI: 10.1021/jf053117l
2. Piombino et al., 2022. DOI: 10.1111/ajgw.12521

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Paola Piombino1, Elisabetta Pittari1, Alessandro Genovese2, Andrea Bellincontro3, Fabio Mencarelli4, Luigi Moio1

1. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino 83100, Italy
2. Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Portici (NA), 80055, Italy
3. DIBAF, University of Tuscia, Via De Lellis, 01100 Viterbo, Italy
4. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy

Contact the author*

Keywords

grapes dehydration, secondary metabolites, aromas, SPE/GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.