terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Abstract

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.

The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

The experimental plan followed a “Temperature (10°C, 15°C, 20°C, 25°C) x Weight loss (0%, 10%, 20%, 30%)” factorial design. Skin and juice free and glycosylated VOCs of grape berries were separately analysed by Solid Phase Extraction/Gas Chromatography–Mass Spectrometry (SPE/GC-MS) [2].

Results showed that skin and juice samples are well discriminated in both varieties, with skins exhibiting a greater aromatic richness, especially in terms of bound VOCs. In Nebbiolo grapes, weight loss showed a greater influence than temperature on free volatiles. This trend was not observed on free VOCs of Aleatico grapes, that were treated with more stressful dehydration conditions of temperature (15°C, 25°C) and weight loss (20%, 30%) compared to Nebbiolo grapes (10°C, 20°C; 10%, 20%).

Temperature seems to play an important role on bound VOCs of both grapes, albeit in a different form. In Nebbiolo grapes, low temperatures (10°C) showed positive correlations with the accumulation of aroma glycosidic precursors. In the case of Aleatico, which is a semi-aromatic variety, dehydration temperatures, appear to modulate terpenes pattern regardless of weight loss. Specifically, samples dehydrated at 15°C correlated with betalinalool, epoxylinalool, cis- and trans-linalool oxide, and geranic acid, while 25°C ones with cis- and trans-geraniol, cis- and trans-citral, α-terpineol, and citronellol.

These results are of interest for optimizing the grape dehydration process not only in an optic of management of product characteristics and varietal oenology, but also in a prospective of management of energy resources needed under controlled dehydration conditions.

 

1. Costantini et al., 2006. DOI: 10.1021/jf053117l
2. Piombino et al., 2022. DOI: 10.1111/ajgw.12521

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Paola Piombino1, Elisabetta Pittari1, Alessandro Genovese2, Andrea Bellincontro3, Fabio Mencarelli4, Luigi Moio1

1. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino 83100, Italy
2. Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Portici (NA), 80055, Italy
3. DIBAF, University of Tuscia, Via De Lellis, 01100 Viterbo, Italy
4. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy

Contact the author*

Keywords

grapes dehydration, secondary metabolites, aromas, SPE/GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.