terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Abstract

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.

The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

The experimental plan followed a “Temperature (10°C, 15°C, 20°C, 25°C) x Weight loss (0%, 10%, 20%, 30%)” factorial design. Skin and juice free and glycosylated VOCs of grape berries were separately analysed by Solid Phase Extraction/Gas Chromatography–Mass Spectrometry (SPE/GC-MS) [2].

Results showed that skin and juice samples are well discriminated in both varieties, with skins exhibiting a greater aromatic richness, especially in terms of bound VOCs. In Nebbiolo grapes, weight loss showed a greater influence than temperature on free volatiles. This trend was not observed on free VOCs of Aleatico grapes, that were treated with more stressful dehydration conditions of temperature (15°C, 25°C) and weight loss (20%, 30%) compared to Nebbiolo grapes (10°C, 20°C; 10%, 20%).

Temperature seems to play an important role on bound VOCs of both grapes, albeit in a different form. In Nebbiolo grapes, low temperatures (10°C) showed positive correlations with the accumulation of aroma glycosidic precursors. In the case of Aleatico, which is a semi-aromatic variety, dehydration temperatures, appear to modulate terpenes pattern regardless of weight loss. Specifically, samples dehydrated at 15°C correlated with betalinalool, epoxylinalool, cis- and trans-linalool oxide, and geranic acid, while 25°C ones with cis- and trans-geraniol, cis- and trans-citral, α-terpineol, and citronellol.

These results are of interest for optimizing the grape dehydration process not only in an optic of management of product characteristics and varietal oenology, but also in a prospective of management of energy resources needed under controlled dehydration conditions.

 

1. Costantini et al., 2006. DOI: 10.1021/jf053117l
2. Piombino et al., 2022. DOI: 10.1111/ajgw.12521

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Paola Piombino1, Elisabetta Pittari1, Alessandro Genovese2, Andrea Bellincontro3, Fabio Mencarelli4, Luigi Moio1

1. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino 83100, Italy
2. Department of Agricultural Sciences, Division of Food Science and Technology, University of Naples Federico II, Portici (NA), 80055, Italy
3. DIBAF, University of Tuscia, Via De Lellis, 01100 Viterbo, Italy
4. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy

Contact the author*

Keywords

grapes dehydration, secondary metabolites, aromas, SPE/GC-MS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.