terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

Abstract

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2. Previous studies have focused on the chemical composition of stems and have shown that astilbin, a sweet molecule, is a one of the major phenolic compounds3,4. The aim of this study is to investigate the effect of whole bunch vinification on the concentration of astilbin in wine.

Several experiments have been carried out in various French wine regions, in Burgundy, Beaujolais and Bordeaux over three vintages allowing to compare different grape varieties namely Pinot Noir, Gamay and Merlot. The addition of stems is carried out while filling the vats, according to different proportions ranging from 15 to 50 % of the total volume of introduced grape. For each experiment, the modality with addition of stems is compared with a vat of destemmed grapes coming from the same plot. Samples were taken throughout the wine-making process to be analyzed by liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer).

The comparison of astilbin content in the two modalities showed that the addition of stems during vatting significantly increased astilbin concentration. Furthermore, this increase varies according to the grape variety. Indeed, the ratio between the astilbin concentration of wines from the two modalities is higher in Merlot than in Pinot Noir and Gamay. The localization of astilbin in the different components of Merlot and Pinot Noir bunch was also investigated in order to better understand this difference.

This study provides new insights on the contribution of stems to the concentration of a sweet compound, astilbin. Besides, these results bring new tools to better understand the practice of whole bunch vinification from a chemical perspective.

 

1. Casassa, L.F., Dermutz, N.P., Mawdsley, P.F., Thompson, M., Catania, A.A., Collins, T.S., Ashmore, P.L., du Fresne, F., Gasic, G., Peterson, J.C.D., 2021. Whole cluster and dried stem additions’ effects on chemical and sensory properties of Pinot noir wines over two vintages. American Journal of Enology and Viticulture 72, 21–35.
2. Pascual, O., González-Royo, E., Gil, M., Gómez-Alonso, S., García-Romero, E., Canals, J.M., Hermosín-Gutíerrez, I., Zamora, F., 2016. Influence of Grape Seeds and Stems on Wine Composition and Astringency. Journal of Agricultural and Food Chemistry. 64, 6555–6566.
3. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
4. Souquet, J.-M., Labarbe, B., Le Guernevé, C., Cheynier, V., Moutounet, M., 2000. Phenolic Composition of Grape Stems. Journal of Agricultural and Food Chemistry 48, 1076–1080.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Le Scanff 1,2, Axel Marchal 1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Stem, Whole bunch vinification, Sweetness, Astilbin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.