terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

Abstract

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2. Previous studies have focused on the chemical composition of stems and have shown that astilbin, a sweet molecule, is a one of the major phenolic compounds3,4. The aim of this study is to investigate the effect of whole bunch vinification on the concentration of astilbin in wine.

Several experiments have been carried out in various French wine regions, in Burgundy, Beaujolais and Bordeaux over three vintages allowing to compare different grape varieties namely Pinot Noir, Gamay and Merlot. The addition of stems is carried out while filling the vats, according to different proportions ranging from 15 to 50 % of the total volume of introduced grape. For each experiment, the modality with addition of stems is compared with a vat of destemmed grapes coming from the same plot. Samples were taken throughout the wine-making process to be analyzed by liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer).

The comparison of astilbin content in the two modalities showed that the addition of stems during vatting significantly increased astilbin concentration. Furthermore, this increase varies according to the grape variety. Indeed, the ratio between the astilbin concentration of wines from the two modalities is higher in Merlot than in Pinot Noir and Gamay. The localization of astilbin in the different components of Merlot and Pinot Noir bunch was also investigated in order to better understand this difference.

This study provides new insights on the contribution of stems to the concentration of a sweet compound, astilbin. Besides, these results bring new tools to better understand the practice of whole bunch vinification from a chemical perspective.

 

1. Casassa, L.F., Dermutz, N.P., Mawdsley, P.F., Thompson, M., Catania, A.A., Collins, T.S., Ashmore, P.L., du Fresne, F., Gasic, G., Peterson, J.C.D., 2021. Whole cluster and dried stem additions’ effects on chemical and sensory properties of Pinot noir wines over two vintages. American Journal of Enology and Viticulture 72, 21–35.
2. Pascual, O., González-Royo, E., Gil, M., Gómez-Alonso, S., García-Romero, E., Canals, J.M., Hermosín-Gutíerrez, I., Zamora, F., 2016. Influence of Grape Seeds and Stems on Wine Composition and Astringency. Journal of Agricultural and Food Chemistry. 64, 6555–6566.
3. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
4. Souquet, J.-M., Labarbe, B., Le Guernevé, C., Cheynier, V., Moutounet, M., 2000. Phenolic Composition of Grape Stems. Journal of Agricultural and Food Chemistry 48, 1076–1080.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Le Scanff 1,2, Axel Marchal 1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Stem, Whole bunch vinification, Sweetness, Astilbin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.