terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

Abstract

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2. Previous studies have focused on the chemical composition of stems and have shown that astilbin, a sweet molecule, is a one of the major phenolic compounds3,4. The aim of this study is to investigate the effect of whole bunch vinification on the concentration of astilbin in wine.

Several experiments have been carried out in various French wine regions, in Burgundy, Beaujolais and Bordeaux over three vintages allowing to compare different grape varieties namely Pinot Noir, Gamay and Merlot. The addition of stems is carried out while filling the vats, according to different proportions ranging from 15 to 50 % of the total volume of introduced grape. For each experiment, the modality with addition of stems is compared with a vat of destemmed grapes coming from the same plot. Samples were taken throughout the wine-making process to be analyzed by liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer).

The comparison of astilbin content in the two modalities showed that the addition of stems during vatting significantly increased astilbin concentration. Furthermore, this increase varies according to the grape variety. Indeed, the ratio between the astilbin concentration of wines from the two modalities is higher in Merlot than in Pinot Noir and Gamay. The localization of astilbin in the different components of Merlot and Pinot Noir bunch was also investigated in order to better understand this difference.

This study provides new insights on the contribution of stems to the concentration of a sweet compound, astilbin. Besides, these results bring new tools to better understand the practice of whole bunch vinification from a chemical perspective.

 

1. Casassa, L.F., Dermutz, N.P., Mawdsley, P.F., Thompson, M., Catania, A.A., Collins, T.S., Ashmore, P.L., du Fresne, F., Gasic, G., Peterson, J.C.D., 2021. Whole cluster and dried stem additions’ effects on chemical and sensory properties of Pinot noir wines over two vintages. American Journal of Enology and Viticulture 72, 21–35.
2. Pascual, O., González-Royo, E., Gil, M., Gómez-Alonso, S., García-Romero, E., Canals, J.M., Hermosín-Gutíerrez, I., Zamora, F., 2016. Influence of Grape Seeds and Stems on Wine Composition and Astringency. Journal of Agricultural and Food Chemistry. 64, 6555–6566.
3. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
4. Souquet, J.-M., Labarbe, B., Le Guernevé, C., Cheynier, V., Moutounet, M., 2000. Phenolic Composition of Grape Stems. Journal of Agricultural and Food Chemistry 48, 1076–1080.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Le Scanff 1,2, Axel Marchal 1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Stem, Whole bunch vinification, Sweetness, Astilbin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).