terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

Abstract

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2. Previous studies have focused on the chemical composition of stems and have shown that astilbin, a sweet molecule, is a one of the major phenolic compounds3,4. The aim of this study is to investigate the effect of whole bunch vinification on the concentration of astilbin in wine.

Several experiments have been carried out in various French wine regions, in Burgundy, Beaujolais and Bordeaux over three vintages allowing to compare different grape varieties namely Pinot Noir, Gamay and Merlot. The addition of stems is carried out while filling the vats, according to different proportions ranging from 15 to 50 % of the total volume of introduced grape. For each experiment, the modality with addition of stems is compared with a vat of destemmed grapes coming from the same plot. Samples were taken throughout the wine-making process to be analyzed by liquid chromatography coupled with high resolution mass spectrometry (UHPLC-Exactive, Orbitrap analyzer).

The comparison of astilbin content in the two modalities showed that the addition of stems during vatting significantly increased astilbin concentration. Furthermore, this increase varies according to the grape variety. Indeed, the ratio between the astilbin concentration of wines from the two modalities is higher in Merlot than in Pinot Noir and Gamay. The localization of astilbin in the different components of Merlot and Pinot Noir bunch was also investigated in order to better understand this difference.

This study provides new insights on the contribution of stems to the concentration of a sweet compound, astilbin. Besides, these results bring new tools to better understand the practice of whole bunch vinification from a chemical perspective.

 

1. Casassa, L.F., Dermutz, N.P., Mawdsley, P.F., Thompson, M., Catania, A.A., Collins, T.S., Ashmore, P.L., du Fresne, F., Gasic, G., Peterson, J.C.D., 2021. Whole cluster and dried stem additions’ effects on chemical and sensory properties of Pinot noir wines over two vintages. American Journal of Enology and Viticulture 72, 21–35.
2. Pascual, O., González-Royo, E., Gil, M., Gómez-Alonso, S., García-Romero, E., Canals, J.M., Hermosín-Gutíerrez, I., Zamora, F., 2016. Influence of Grape Seeds and Stems on Wine Composition and Astringency. Journal of Agricultural and Food Chemistry. 64, 6555–6566.
3. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
4. Souquet, J.-M., Labarbe, B., Le Guernevé, C., Cheynier, V., Moutounet, M., 2000. Phenolic Composition of Grape Stems. Journal of Agricultural and Food Chemistry 48, 1076–1080.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Le Scanff 1,2, Axel Marchal 1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Stem, Whole bunch vinification, Sweetness, Astilbin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.